These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 22256258)

  • 1. Cortical network modeling for inverse kinematic computation of an anthropomorphic finger.
    Gentili RJ; Oh H; Molina J; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8251-4. PubMed ID: 22256258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.
    Gentili RJ; Oh H; Molina J; Reggia JA; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3052-5. PubMed ID: 23366569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A cortically-inspired model for inverse kinematics computation of a humanoid finger with mechanically coupled joints.
    Gentili RJ; Oh H; Kregling AV; Reggia JA
    Bioinspir Biomim; 2016 May; 11(3):036013. PubMed ID: 27194213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anthropomorphic Tendon-Based Hands Controlled by Agonist-Antagonist Corticospinal Neural Network.
    García-Córdova F; Guerrero-González A; Hidalgo-Castelo F
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust neural decoding for dexterous control of robotic hand kinematics.
    Fan J; Vargas L; Kamper DG; Hu X
    Comput Biol Med; 2023 Aug; 162():107139. PubMed ID: 37301095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccade control in a simulated robot camera-head system: neural net architectures for efficient learning of inverse kinematics.
    Dean P; Mayhew JE; Thacker N; Langdon PM
    Biol Cybern; 1991; 66(1):27-36. PubMed ID: 1768710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fuzzy neuronal model of motor control inspired by cerebellar pathways to online and gradually learn inverse biomechanical functions in the presence of delay.
    Salimi-Badr A; Ebadzadeh MM; Darlot C
    Biol Cybern; 2017 Dec; 111(5-6):421-438. PubMed ID: 28993878
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive, fast walking in a biped robot under neuronal control and learning.
    Manoonpong P; Geng T; Kulvicius T; Porr B; Wörgötter F
    PLoS Comput Biol; 2007 Jul; 3(7):e134. PubMed ID: 17630828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated linkage-driven dexterous anthropomorphic robotic hand.
    Kim U; Jung D; Jeong H; Park J; Jung HM; Cheong J; Choi HR; Do H; Park C
    Nat Commun; 2021 Dec; 12(1):7177. PubMed ID: 34907178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling dynamic high-DOF finger postures from surface EMG using nonlinear synergies in latent space representation.
    Ngeo J; Tamei T; Ikeda K; Shibata T
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2095-8. PubMed ID: 26736701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Compliant, Underactuated Finger for Anthropomorphic Hands.
    Kontoudis GP; Liarokapis M; Vamvoudakis KG
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():682-688. PubMed ID: 31374710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cerebellum-inspired neural network solution of the inverse kinematics problem.
    Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA
    Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards Efficient Neural Decoder for Dexterous Finger Force Predictions.
    Fan J; Hu X
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1831-1840. PubMed ID: 38215325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancement of finger motion range with compliant anthropomorphic joint design.
    Çulha U; Iida F
    Bioinspir Biomim; 2016 Feb; 11(2):026001. PubMed ID: 26891473
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bilateral deficit and symmetry in finger force production during two-hand multifinger tasks.
    Li S; Danion F; Latash ML; Li ZM; Zatsiorsky VM
    Exp Brain Res; 2001 Dec; 141(4):530-40. PubMed ID: 11810146
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Soft Robotic Gripper Based on Bioinspired Fingers.
    Yan Y; Cheng C; Guan M; Zhang J; Wang Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4570-4573. PubMed ID: 34892233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.
    Srinivasa N; Cho Y
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1526-38. PubMed ID: 24807999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.