These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 22256273)

  • 21. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling of internal carotid artery aneurysm and blood flow simulation.
    Xu B; Zhong H; Duan S
    Technol Health Care; 2015; 23 Suppl 1():S43-8. PubMed ID: 26410327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Numerical analysis of 3D blood flow and common carotid artery hemodynamics in the carotid artery bifurcation with stenosis.
    Antonova N; Dong X; Tosheva P; Kaliviotis E; Velcheva I
    Clin Hemorheol Microcirc; 2014; 57(2):159-73. PubMed ID: 24584325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reproducibility of image-based computational fluid dynamics models of the human carotid bifurcation.
    Thomas JB; Milner JS; Rutt BK; Steinman DA
    Ann Biomed Eng; 2003 Feb; 31(2):132-41. PubMed ID: 12627820
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carotid geometry effects on blood flow and on risk for vascular disease.
    Nguyen KT; Clark CD; Chancellor TJ; Papavassiliou DV
    J Biomech; 2008; 41(1):11-9. PubMed ID: 17919645
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models.
    Perktold K; Thurner E; Kenner T
    Med Biol Eng Comput; 1994 Jan; 32(1):19-26. PubMed ID: 8182957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of boundary conditions for CFD simulation in human carotid artery.
    Xu P; Liu X; Zhang H; Ghista D; Zhang D; Shi C; Huang W
    Biomech Model Mechanobiol; 2018 Dec; 17(6):1581-1597. PubMed ID: 29982960
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rheological changes after stenting of a cerebral aneurysm: a finite element modeling approach.
    Ohta M; Wetzel SG; Dantan P; Bachelet C; Lovblad KO; Yilmaz H; Flaud P; Rüfenacht DA
    Cardiovasc Intervent Radiol; 2005; 28(6):768-72. PubMed ID: 16184328
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generating wall shear stress for coronary artery in real-time using neural networks: Feasibility and initial results based on idealized models.
    Su B; Zhang JM; Zou H; Ghista D; Le TT; Chin C
    Comput Biol Med; 2020 Nov; 126():104038. PubMed ID: 33039809
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Non-Newtonian models for molecular viscosity and wall shear stress in a 3D reconstructed human left coronary artery.
    Soulis JV; Giannoglou GD; Chatzizisis YS; Seralidou KV; Parcharidis GE; Louridas GE
    Med Eng Phys; 2008 Jan; 30(1):9-19. PubMed ID: 17412633
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamics in aneurysm.
    Kumar BV; Naidu KB
    Comput Biomed Res; 1996 Apr; 29(2):119-39. PubMed ID: 8785910
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the Effect of Red Blood Cells Deformability on Blood Flow Conditions in Human Carotid Artery Bifurcation.
    Urevc J; Žun I; Brumen M; Štok B
    J Biomech Eng; 2017 Jan; 139(1):. PubMed ID: 27814428
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Outflow conditions for image-based hemodynamic models of the carotid bifurcation: implications for indicators of abnormal flow.
    Morbiducci U; Gallo D; Massai D; Consolo F; Ponzini R; Antiga L; Bignardi C; Deriu MA; Redaelli A
    J Biomech Eng; 2010 Sep; 132(9):091005. PubMed ID: 20815639
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time-efficient patient-specific quantification of regional carotid artery fluid dynamics and spatial correlation with plaque burden.
    LaDisa JF; Bowers M; Harmann L; Prost R; Doppalapudi AV; Mohyuddin T; Zaidat O; Migrino RQ
    Med Phys; 2010 Feb; 37(2):784-92. PubMed ID: 20229888
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow.
    Glor FP; Long Q; Hughes AD; Augst AD; Ariff B; Thom SA; Verdonck PR; Xu XY
    Ann Biomed Eng; 2003 Feb; 31(2):142-51. PubMed ID: 12627821
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids.
    Frolov SV; Sindeev SV; Liepsch D; Balasso A
    Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study.
    Wang H; Krüger T; Varnik F
    PLoS One; 2020; 15(1):e0227770. PubMed ID: 31945111
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computational fluid dynamics study of intra-arterial chemotherapy for oral cancer.
    Kitajima H; Oshima M; Iwai T; Ohhara Y; Yajima Y; Mitsudo K; Tohnai I
    Biomed Eng Online; 2017 May; 16(1):57. PubMed ID: 28506222
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational vascular fluid-structure interaction: methodology and application to cerebral aneurysms.
    Bazilevs Y; Hsu MC; Zhang Y; Wang W; Kvamsdal T; Hentschel S; Isaksen JG
    Biomech Model Mechanobiol; 2010 Aug; 9(4):481-98. PubMed ID: 20111978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.