These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 22256298)
1. Towards a cellular multi-parameter analysis platform: fluorescence in situ hybridization (FISH) on microhole-array chips. Kurz CM; Moosdijk SV; Thielecke H; Velten T Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():8408-11. PubMed ID: 22256298 [TBL] [Abstract][Full Text] [Related]
2. FISH-in-CHIPS: A Microfluidic Platform for Molecular Typing of Cancer Cells. Perez-Toralla K; Mottet G; Tulukcuoglu-Guneri E; Champ J; Bidard FC; Pierga JY; Klijanienko J; Draskovic I; Malaquin L; Viovy JL; Descroix S Methods Mol Biol; 2017; 1547():211-220. PubMed ID: 28044298 [TBL] [Abstract][Full Text] [Related]
3. FISH and chips: a review of microfluidic platforms for FISH analysis. Rodriguez-Mateos P; Azevedo NF; Almeida C; Pamme N Med Microbiol Immunol; 2020 Jun; 209(3):373-391. PubMed ID: 31965296 [TBL] [Abstract][Full Text] [Related]
4. Rapid fluorescence in situ hybridization with repetitive DNA probes: quantification by digital image analysis. Celeda D; Aldinger K; Haar FM; Hausmann M; Durm M; Ludwig H; Cremer C Cytometry; 1994 Sep; 17(1):13-25. PubMed ID: 8001456 [TBL] [Abstract][Full Text] [Related]
5. A fluorescence in situ hybridization (FISH) microfluidic platform for detection of HER2 amplification in cancer cells. Kao KJ; Tai CH; Chang WH; Yeh TS; Chen TC; Lee GB Biosens Bioelectron; 2015 Jul; 69():272-9. PubMed ID: 25770459 [TBL] [Abstract][Full Text] [Related]
6. Detection of complete and partial chromosome gains and losses by comparative genomic in situ hybridization. du Manoir S; Speicher MR; Joos S; Schröck E; Popp S; Döhner H; Kovacs G; Robert-Nicoud M; Lichter P; Cremer T Hum Genet; 1993 Feb; 90(6):590-610. PubMed ID: 8444465 [TBL] [Abstract][Full Text] [Related]
7. An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Sieben VJ; Debes-Marun CS; Pilarski LM; Backhouse CJ Lab Chip; 2008 Dec; 8(12):2151-6. PubMed ID: 19023479 [TBL] [Abstract][Full Text] [Related]
8. Microdevice in Cellular Pathology: Microfluidic Platforms for Fluorescence in situ Hybridization and Analysis of Circulating Tumor Cells. Sato K Anal Sci; 2015; 31(9):867-73. PubMed ID: 26353951 [TBL] [Abstract][Full Text] [Related]
9. High-efficiency single-cell entrapment and fluorescence in situ hybridization analysis using a poly(dimethylsiloxane) microfluidic device integrated with a black poly(ethylene terephthalate) micromesh. Matsunaga T; Hosokawa M; Arakaki A; Taguchi T; Mori T; Tanaka T; Takeyama H Anal Chem; 2008 Jul; 80(13):5139-45. PubMed ID: 18537270 [TBL] [Abstract][Full Text] [Related]
10. FISH and chips: chromosomal analysis on microfluidic platforms. Sieben VJ; Debes Marun CS; Pilarski PM; Kaigala GV; Pilarski LM; Backhouse CJ IET Nanobiotechnol; 2007 Jun; 1(3):27-35. PubMed ID: 17506594 [TBL] [Abstract][Full Text] [Related]
11. Comparison of fluorescein isothiocyanate- and Texas red-conjugated nucleotides for direct labeling in comparative genomic hybridization. Larramendy ML; El-Rifai W; Knuutila S Cytometry; 1998 Mar; 31(3):174-9. PubMed ID: 9515716 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence Image Analyzer - FLIMA: software for quantitative analysis of fluorescence in situ hybridization. Silva HC; Martins-Júnior MM; Ribeiro LB; Matoso DA Genet Mol Res; 2017 Mar; 16(1):. PubMed ID: 28363012 [TBL] [Abstract][Full Text] [Related]
13. Development of software and modification of Q-FISH protocol for estimation of individual telomere length in immunopathology. Barkovskaya MS; Bogomolov AG; Knauer NY; Rubtsov NB; Kozlov VA J Bioinform Comput Biol; 2017 Apr; 15(2):1650041. PubMed ID: 28110603 [TBL] [Abstract][Full Text] [Related]
14. Analysis of Common Abnormalities Seen in Chronic Lymphocytic Leukemia Using Fluorescence In Situ Hybridization. Meyer RG; Van Dyke DL Methods Mol Biol; 2019; 1881():35-49. PubMed ID: 30350196 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous detection of multiple genetic aberrations in single cells by spectral fluorescence in situ hybridization. Slovak ML; Tcheurekdjian L; Zhang FF; Murata-Collins JL Cancer Res; 2001 Feb; 61(3):831-6. PubMed ID: 11221864 [TBL] [Abstract][Full Text] [Related]
16. CCD microscopy and image analysis of cells and chromosomes stained by fluorescence in situ hybridization. Tanke HJ; Florijn RJ; Wiegant J; Raap AK; Vrolijk J Histochem J; 1995 Jan; 27(1):4-14. PubMed ID: 7713755 [TBL] [Abstract][Full Text] [Related]
17. The Comet-FISH assay for the analysis of DNA damage and repair. Spivak G Methods Mol Biol; 2010; 659():129-45. PubMed ID: 20809308 [TBL] [Abstract][Full Text] [Related]
18. FISH and chips: automation of fluorescent dot counting in interphase cell nuclei. Netten H; Young IT; van Vliet LJ; Tanke HJ; Vroljik H; Sloos WC Cytometry; 1997 May; 28(1):1-10. PubMed ID: 9136750 [TBL] [Abstract][Full Text] [Related]
19. An approach for quantitative assessment of fluorescence in situ hybridization (FISH) signals for applied human molecular cytogenetics. Iourov IY; Soloviev IV; Vorsanova SG; Monakhov VV; Yurov YB J Histochem Cytochem; 2005 Mar; 53(3):401-8. PubMed ID: 15750029 [TBL] [Abstract][Full Text] [Related]
20. FISH in chips: turning microfluidic fluorescence in situ hybridization into a quantitative and clinically reliable molecular diagnosis tool. Perez-Toralla K; Mottet G; Guneri ET; Champ J; Bidard FC; Pierga JY; Klijanienko J; Draskovic I; Malaquin L; Viovy JL; Descroix S Lab Chip; 2015 Feb; 15(3):811-22. PubMed ID: 25474258 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]