BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 22256972)

  • 1. Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy.
    Lei DY; Fernández-Domínguez AI; Sonnefraud Y; Appavoo K; Haglund RF; Pendry JB; Maier SA
    ACS Nano; 2012 Feb; 6(2):1380-6. PubMed ID: 22256972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid plasmonic gap modes in metal film-coupled dimers and their physical origins revealed by polarization resolved dark field spectroscopy.
    Li GC; Zhang YL; Lei DY
    Nanoscale; 2016 Apr; 8(13):7119-26. PubMed ID: 26962966
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold nanoparticles on polarizable surfaces as Raman scattering antennas.
    Chen SY; Mock JJ; Hill RT; Chilkoti A; Smith DR; Lazarides AA
    ACS Nano; 2010 Nov; 4(11):6535-46. PubMed ID: 21038892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating the optical properties of pyramidal nanoparticle arrays.
    Henzie J; Shuford KL; Kwak ES; Schatz GC; Odom TW
    J Phys Chem B; 2006 Jul; 110(29):14028-31. PubMed ID: 16854094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic properties of single multispiked gold nanostars: correlating modeling with experiments.
    Shao L; Susha AS; Cheung LS; Sau TK; Rogach AL; Wang J
    Langmuir; 2012 Jun; 28(24):8979-84. PubMed ID: 22353020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers.
    Nome RA; Guffey MJ; Scherer NF; Gray SK
    J Phys Chem A; 2009 Apr; 113(16):4408-15. PubMed ID: 19267445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-fabrication voltage controlled resonance tuning of nanoscale plasmonic antennas.
    Lumdee C; Toroghi S; Kik PG
    ACS Nano; 2012 Jul; 6(7):6301-7. PubMed ID: 22731808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering photonic-plasmonic coupling in metal nanoparticle necklaces.
    Pasquale AJ; Reinhard BM; Dal Negro L
    ACS Nano; 2011 Aug; 5(8):6578-85. PubMed ID: 21739951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometrical Mie theory for resonances in nanoparticles of any shape.
    Papoff F; Hourahine B
    Opt Express; 2011 Oct; 19(22):21432-44. PubMed ID: 22108993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic-plasmonic mode coupling in on-chip integrated optoplasmonic molecules.
    Ahn W; Boriskina SV; Hong Y; Reinhard BM
    ACS Nano; 2012 Jan; 6(1):951-60. PubMed ID: 22148502
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absorption and scattering of light by Pt, Pd, Ag, and Au nanodisks: absolute cross sections and branching ratios.
    Langhammer C; Kasemo B; Zorić I
    J Chem Phys; 2007 May; 126(19):194702. PubMed ID: 17523823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiation of the high-order plasmonic modes of large gold nanospheres excited by surface plasmon polaritons.
    Chen JD; Xiang J; Jiang S; Dai QF; Tie SL; Lan S
    Nanoscale; 2018 May; 10(19):9153-9163. PubMed ID: 29725675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic sphere-on-plane systems with semiconducting polymer spacer layers.
    Yu B; Tracey JI; Cheng Z; Vacha M; O'Carroll DM
    Phys Chem Chem Phys; 2018 May; 20(17):11749-11757. PubMed ID: 29651496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.
    Roiter Y; Minko I; Nykypanchuk D; Tokarev I; Minko S
    Nanoscale; 2012 Jan; 4(1):284-92. PubMed ID: 22081128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of excitation and collection geometry on the dark field spectra of individual plasmonic nanostructures.
    Knight MW; Fan J; Capasso F; Halas NJ
    Opt Express; 2010 Feb; 18(3):2579-87. PubMed ID: 20174087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visualization of multipolar longitudinal and transversal surface plasmon modes in nanowire dimers.
    Alber I; Sigle W; Müller S; Neumann R; Picht O; Rauber M; van Aken PA; Toimil-Molares ME
    ACS Nano; 2011 Dec; 5(12):9845-53. PubMed ID: 22077953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metallic membranes with subwavelength complementary patterns: distinct substrates for surface-enhanced Raman scattering.
    Hao Q; Zeng Y; Juluri BK; Wang X; Kiraly B; Chiang IK; Jensen L; Werner DH; Crespi VH; Huang TJ
    ACS Nano; 2011 Jul; 5(7):5472-7. PubMed ID: 21657215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres.
    Slablab A; Le Xuan L; Zielinski M; de Wilde Y; Jacques V; Chauvat D; Roch JF
    Opt Express; 2012 Jan; 20(1):220-7. PubMed ID: 22274345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.