BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 22257166)

  • 1. Improvement of the modeling of the low-temperature oxidation of n-butane: study of the primary reactions.
    Cord M; Sirjean B; Fournet R; Tomlin A; Ruiz-Lopez M; Battin-Leclerc F
    J Phys Chem A; 2012 Jun; 116(24):6142-58. PubMed ID: 22257166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the low temperature oxidation of propane.
    Cord M; Husson B; Lizardo Huerta JC; Herbinet O; Glaude PA; Fournet R; Sirjean B; Battin-Leclerc F; Ruiz-Lopez M; Wang Z; Xie M; Cheng Z; Qi F
    J Phys Chem A; 2012 Dec; 116(50):12214-28. PubMed ID: 23181456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A temperature-dependent relative-rate study of the OH initiated oxidation of n-butane: the kinetics of the reactions of the 1- and 2-butoxy radicals.
    Cassanelli P; Johnson D; Anthony Cox R
    Phys Chem Chem Phys; 2005 Nov; 7(21):3702-10. PubMed ID: 16358017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical kinetic study of the reactions of cycloalkylperoxy radicals.
    Sirjean B; Glaude PA; Ruiz-Lòpez MF; Fournet R
    J Phys Chem A; 2009 Jun; 113(25):6924-35. PubMed ID: 19476363
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic computational study on the unimolecular reactions of alkylperoxy (RO2), hydroperoxyalkyl (QOOH), and hydroperoxyalkylperoxy (O2QOOH) radicals.
    Miyoshi A
    J Phys Chem A; 2011 Apr; 115(15):3301-25. PubMed ID: 21446694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An experimental and modeling study of the low- and high-temperature oxidation of cyclohexane.
    Serinyel Z; Herbinet O; Frottier O; Dirrenberger P; Warth V; Glaude PA; Battin-Leclerc F
    Combust Flame; 2013 Nov; 160(11):2319-2332. PubMed ID: 24124264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detailed product analysis during the low temperature oxidation of n-butane.
    Herbinet O; Battin-Leclerc F; Bax S; Le Gall H; Glaude PA; Fournet R; Zhou Z; Deng L; Guo H; Xie M; Qi F
    Phys Chem Chem Phys; 2011 Jan; 13(1):296-308. PubMed ID: 21031192
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unimolecular Reactions of 2-Methyloxetanyl and 2-Methyloxetanylperoxy Radicals.
    Doner AC; Dewey NS; Rotavera B
    J Phys Chem A; 2023 Aug; 127(32):6816-6829. PubMed ID: 37535464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A theoretical study on the reaction mechanism of O2 with C4H9• radical.
    Du HC; Gong XD
    J Mol Model; 2012 May; 18(5):2219-26. PubMed ID: 21947450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of Low- and Intermediate-Temperature Oxidation Kinetics of Diethyl Ether in a Supercritical Pressure Jet-Stirred Reactor.
    Wang Z; Yan C; Mei B; Lin Y; Ju Y
    J Phys Chem A; 2023 Jan; 127(2):506-516. PubMed ID: 36602934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochemistry and Kinetic Studies on the Autoignition of 2-Butanone: A Computational Study.
    Kuzhanthaivelan S; Rajakumar B
    J Phys Chem A; 2018 Jul; 122(29):6134-6146. PubMed ID: 29963867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether.
    Rodriguez A; Frottier O; Herbinet O; Fournet R; Bounaceur R; Fittschen C; Battin-Leclerc F
    J Phys Chem A; 2015 Jul; 119(28):7905-23. PubMed ID: 25870904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncovering the fundamental chemistry of alkyl + O2 reactions via measurements of product formation.
    Taatjes CA
    J Phys Chem A; 2006 Apr; 110(13):4299-312. PubMed ID: 16571032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature (550-700 K) oxidation pathways of cyclic ketones: dominance of HO2-elimination channels yielding conjugated cyclic coproducts.
    Scheer AM; Welz O; Vasu SS; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2015 May; 17(18):12124-34. PubMed ID: 25877515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of the oxidation of methyl esters-Validation for methyl hexanoate, methyl heptanoate, and methyl decanoate in a jet-stirred reactor.
    Glaude PA; Herbinet O; Bax S; Biet J; Warth V; Battin-Leclerc F
    Combust Flame; 2010 Nov; 157(11):2035-2050. PubMed ID: 23710076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature combustion chemistry of novel biofuels: resonance-stabilized QOOH in the oxidation of diethyl ketone.
    Scheer AM; Welz O; Zádor J; Osborn DL; Taatjes CA
    Phys Chem Chem Phys; 2014 Jul; 16(26):13027-40. PubMed ID: 24585023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unimolecular Reactions of 2,4-Dimethyloxetanyl Radicals.
    Doner AC; Zádor J; Rotavera B
    J Phys Chem A; 2023 Mar; 127(11):2591-2600. PubMed ID: 36898134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism and kinetics of low-temperature oxidation of a biodiesel surrogate: methyl propanoate radicals with oxygen molecule.
    Le XT; Mai TV; Ratkiewicz A; Huynh LK
    J Phys Chem A; 2015 Apr; 119(16):3689-703. PubMed ID: 25822662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.