These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 22258687)

  • 1. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling.
    Nossent J; Bauwens W
    Water Sci Technol; 2012; 65(3):539-49. PubMed ID: 22258687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity analysis and calibration of the parameters of ESWAT: application to the River Dender.
    Vandenberghe V; van Griensven A; Bauwens W
    Water Sci Technol; 2001; 43(7):295-300. PubMed ID: 11385861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Management-oriented sensitivity analysis for pesticide transport in watershed-scale water quality modeling using SWAT.
    Luo Y; Zhang M
    Environ Pollut; 2009 Dec; 157(12):3370-8. PubMed ID: 19616876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the integrated urban water quality model complexity through identifiability analysis.
    Freni G; Mannina G; Viviani G
    Water Res; 2011 Jan; 45(1):37-50. PubMed ID: 20732705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hydrodynamic water quality model for propagation of pollutants in rivers.
    Mannina G; Viviani G
    Water Sci Technol; 2010; 62(2):288-99. PubMed ID: 20651432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality.
    van Griensven A; Francos A; Bauwens W
    Water Sci Technol; 2002; 45(9):325-32. PubMed ID: 12079121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing exposure to transformation products of soil-applied organic contaminants in surface water: comparison of model predictions and field data.
    Kern S; Singer H; Hollender J; Schwarzenbach RP; Fenner K
    Environ Sci Technol; 2011 Apr; 45(7):2833-41. PubMed ID: 21370857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield.
    Dujardin J; Batelaan O; Canters F; Boel S; Anibas C; Bronders J
    Sci Total Environ; 2011 Jan; 409(4):800-9. PubMed ID: 21112074
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water toxicity assessment and spatial pollution patterns identification in a Mediterranean River Basin District. Tools for water management and risk analysis.
    Carafa R; Faggiano L; Real M; Munné A; Ginebreda A; Guasch H; Flo M; Tirapu L; von der Ohe PC
    Sci Total Environ; 2011 Sep; 409(20):4269-79. PubMed ID: 21794894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the QUESTOR water quality model using a Fourier amplitude sensitivity test (FAST) for two UK rivers.
    Deflandre A; Williams RJ; Elorza FJ; Mira J; Boorman DB
    Sci Total Environ; 2006 May; 360(1-3):290-304. PubMed ID: 16219341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral water quality modelling of catchments.
    van Griensven A; Bauwens W
    Water Sci Technol; 2001; 43(7):321-8. PubMed ID: 11385864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A parsimonious dynamic model for river water quality assessment.
    Mannina G; Viviani G
    Water Sci Technol; 2010; 61(3):607-18. PubMed ID: 20150696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field leaching of pesticides at five test sites in Hawaii: modeling flow and transport.
    Dusek J; Dohnal M; Vogel T; Ray C
    Pest Manag Sci; 2011 Dec; 67(12):1571-82. PubMed ID: 21681917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling riverine nitrate export from an East-Central Illinois watershed using SWAT.
    Hu X; McIsaac GF; David MB; Louwers CA
    J Environ Qual; 2007; 36(4):996-1005. PubMed ID: 17526878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of urban runoff and water quality using remote sensing and artificial intelligence.
    Ha SR; Park SY; Park DH
    Water Sci Technol; 2003; 47(7-8):319-25. PubMed ID: 12793696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the soil and water assessment tool.
    Nafees Ahmad HM; Sinclair A; Jamieson R; Madani A; Hebb D; Havard P; Yiridoe EK
    J Environ Qual; 2011; 40(4):1182-94. PubMed ID: 21712588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity analysis of non-point sources in a water quality model applied to a dammed low-flow-reach river.
    Silva NG; von Sperling M
    Water Sci Technol; 2008; 57(8):1295-300. PubMed ID: 18469404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of environmental tracers in groundwater systems with stagnant water zones.
    Maloszewski P; Stichler W; Zuber A
    Isotopes Environ Health Stud; 2004 Mar; 40(1):21-33. PubMed ID: 15085981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of the most optimal measuring points for water quality variables: application to the river water quality model of the River Dender in ESWAT.
    Vandenberghe V; van Griensven A; Bauwens W
    Water Sci Technol; 2002; 46(3):1-7. PubMed ID: 12227594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.