BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 22260423)

  • 1. Reactions of a sulfonamide antimicrobial with model humic constituents: assessing pathways and stability of covalent bonding.
    Gulkowska A; Krauss M; Rentsch D; Hollender J
    Environ Sci Technol; 2012 Feb; 46(4):2102-11. PubMed ID: 22260423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Covalent binding of sulfamethazine to natural and synthetic humic acids: assessing laccase catalysis and covalent bond stability.
    Gulkowska A; Sander M; Hollender J; Krauss M
    Environ Sci Technol; 2013 Jul; 47(13):6916-24. PubMed ID: 23384282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NMR investigation of enzymatic coupling of sulfonamide antimicrobials with humic substances.
    Bialk HM; Pedersen JA
    Environ Sci Technol; 2008 Jan; 42(1):106-12. PubMed ID: 18350883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-coupling of sulfonamide antimicrobial agents with model humic constituents.
    Bialk HM; Simpson AJ; Pedersen JA
    Environ Sci Technol; 2005 Jun; 39(12):4463-73. PubMed ID: 16047782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of 2,4,6-trinitrotoluene (TNT) and 4-amino-2,6-dinitrotoluene with humic monomers in the presence of oxidative enzymes.
    Wang CJ; Thiele S; Bollag JM
    Arch Environ Contam Toxicol; 2002 Jan; 42(1):1-8. PubMed ID: 11706361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Covalent bonding of chloroanilines to humic constituents: pathways, kinetics, and stability.
    Kong D; Xia Q; Liu G; Huang Q; Lu J
    Environ Pollut; 2013 Sep; 180():48-54. PubMed ID: 23727567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonextractable residue formation of sulfonamide antimicrobials: new insights from soil incubation experiments.
    Gulkowska A; Thalmann B; Hollender J; Krauss M
    Chemosphere; 2014 Jul; 107():366-372. PubMed ID: 24461426
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation and products of captopril with humic constituents during laccase-catalyzed oxidation: Role of reactive intermediates.
    Du P; Zhao H; Liu C; Huang Q; Cao H
    Water Res; 2016 Dec; 106():488-495. PubMed ID: 27770725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laccase-mediated michael addition of 15N-sulfapyridine to a model humic constituent.
    Bialk HM; Hedman C; Castillo A; Pedersen JA
    Environ Sci Technol; 2007 May; 41(10):3593-600. PubMed ID: 17547183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The transformation of triclosan by laccase: Effect of humic acid on the reaction kinetics, products and pathway.
    Dou RN; Wang JH; Chen YC; Hu YY
    Environ Pollut; 2018 Mar; 234():88-95. PubMed ID: 29172042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dirhodium-catalyzed phenol and aniline oxidations with T-HYDRO. Substrate scope and mechanism of oxidation.
    Ratnikov MO; Farkas LE; McLaughlin EC; Chiou G; Choi H; el-Khalafy SH; Doyle MP
    J Org Chem; 2011 Apr; 76(8):2585-93. PubMed ID: 21413678
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon-oxygen bond formation by fungal laccases: cross-coupling of 2,5-dihydroxy-N-(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.
    Manda K; Gördes D; Mikolasch A; Hammer E; Schmidt E; Thurow K; Schauer F
    Appl Microbiol Biotechnol; 2007 Aug; 76(2):407-16. PubMed ID: 17576553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous oxidation of sulfonamide antibiotics: aromatic nucleophilic substitution of an aniline radical cation.
    Tentscher PR; Eustis SN; McNeill K; Arey JS
    Chemistry; 2013 Aug; 19(34):11216-23. PubMed ID: 23828254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transformation of triclosan by laccase catalyzed oxidation: The influence of humic acid-metal binding process.
    Lu J; Shi Y; Ji Y; Kong D; Huang Q
    Environ Pollut; 2017 Jan; 220(Pt B):1418-1423. PubMed ID: 27823864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin.
    Kahle M; Stamm C
    Environ Sci Technol; 2007 Jan; 41(1):132-8. PubMed ID: 17265938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactions between aromatic hydrocarbons and heterocycles: covalent and proton-bound dimer cations of benzene/pyridine.
    El-Shall MS; Ibrahim YM; Alsharaeh EH; Meot-Ner Mautner M; Watson SP
    J Am Chem Soc; 2009 Jul; 131(29):10066-76. PubMed ID: 19621961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical mechanisms for skin sensitization by aromatic compounds with hydroxy and amino groups.
    Aptula AO; Enoch SJ; Roberts DW
    Chem Res Toxicol; 2009 Sep; 22(9):1541-7. PubMed ID: 19678610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidation of sulfamethoxazole and related antimicrobial agents by TiO2 photocatalysis.
    Hu L; Flanders PM; Miller PL; Strathmann TJ
    Water Res; 2007 Jun; 41(12):2612-26. PubMed ID: 17433403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase/mediator assisted degradation of triarylmethane dyes in a continuous membrane reactor.
    Chhabra M; Mishra S; Sreekrishnan TR
    J Biotechnol; 2009 Aug; 143(1):69-78. PubMed ID: 19539671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basis of a humeomics science: chemical fractionation and molecular characterization of humic biosuprastructures.
    Nebbioso A; Piccolo A
    Biomacromolecules; 2011 Apr; 12(4):1187-99. PubMed ID: 21361272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.