BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22260449)

  • 1. Binding of a truncated form of lecithin:retinol acyltransferase and its N- and C-terminal peptides to lipid monolayers.
    Bussières S; Cantin L; Desbat B; Salesse C
    Langmuir; 2012 Feb; 28(7):3516-23. PubMed ID: 22260449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Secondary structure of a truncated form of lecithin retinol acyltransferase in solution and evidence for its binding and hydrolytic action in monolayers.
    Bussières S; Buffeteau T; Desbat B; Breton R; Salesse C
    Biochim Biophys Acta; 2008 May; 1778(5):1324-34. PubMed ID: 18284914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lecithin retinol acyltransferase and its S175R mutant have a similar secondary structure content and maximum insertion pressure but different enzyme activities.
    Bussières S; Cantin L; Salesse C
    Exp Eye Res; 2011 Nov; 93(5):778-81. PubMed ID: 21821024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic activity of Lecithin:retinol acyltransferase: a thermostable and highly active enzyme with a likely mode of interfacial activation.
    Horchani H; Bussières S; Cantin L; Lhor M; Laliberté-Gemme JS; Breton R; Salesse C
    Biochim Biophys Acta; 2014 Jun; 1844(6):1128-36. PubMed ID: 24613493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformation and lipid binding properties of four peptides derived from the membrane-binding domain of CTP:phosphocholine cytidylyltransferase.
    Johnson JE; Rao NM; Hui SW; Cornell RB
    Biochemistry; 1998 Jun; 37(26):9509-19. PubMed ID: 9649334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison between the enzymatic activity, structure and substrate binding of mouse and human lecithin retinol acyltransferase.
    Gauthier ME; Roy S; Cantin L; Salesse C
    Biochem Biophys Res Commun; 2019 Nov; 519(4):832-837. PubMed ID: 31561851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins.
    Lhor M; Bernier SC; Horchani H; Bussières S; Cantin L; Desbat B; Salesse C
    Adv Colloid Interface Sci; 2014 May; 207():223-39. PubMed ID: 24560216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters modulating the maximum insertion pressure of proteins and peptides in lipid monolayers.
    Calvez P; Bussières S; Eric Demers ; Salesse C
    Biochimie; 2009 Jun; 91(6):718-33. PubMed ID: 19345719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification and characterization of a transmembrane domain-deleted form of lecithin retinol acyltransferase.
    Bok D; Ruiz A; Yaron O; Jahng WJ; Ray A; Xue L; Rando RR
    Biochemistry; 2003 May; 42(20):6090-8. PubMed ID: 12755610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lecithin:retinol acyltransferase in ARPE-19.
    Trevino SG; Schuschereba ST; Bowman PD; Tsin A
    Exp Eye Res; 2005 Jun; 80(6):897-900. PubMed ID: 15939047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural characterization and topology of the second potential membrane anchor region in the thromboxane A2 synthase amino-terminal domain.
    Ruan KH; Li D; Ji J; Lin YZ; Gao X
    Biochemistry; 1998 Jan; 37(3):822-30. PubMed ID: 9454571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the membrane orientation and secondary structure of the C-terminal domains of Bak and Bcl-2 by lipids.
    Torrecillas A; Martínez-Senac MM; Goormaghtigh E; de Godos A; Corbalán-García S; Gómez-Fernández JC
    Biochemistry; 2005 Aug; 44(32):10796-809. PubMed ID: 16086582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Palmitoyl transferase activity of lecithin retinol acyl transferase.
    Xue L; Jahng WJ; Gollapalli D; Rando RR
    Biochemistry; 2006 Sep; 45(35):10710-8. PubMed ID: 16939223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Topology and membrane association of lecithin: retinol acyltransferase.
    Moise AR; Golczak M; Imanishi Y; Palczewski K
    J Biol Chem; 2007 Jan; 282(3):2081-90. PubMed ID: 17114808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acyl CoA:retinol acyltransferase (ARAT) activity is present in bovine retinal pigment epithelium.
    Kaschula CH; Jin MH; Desmond-Smith NS; Travis GH
    Exp Eye Res; 2006 Jan; 82(1):111-21. PubMed ID: 16054134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and binding of the C-terminal segment of R9AP to lipid monolayers.
    Bernier SC; Horchani H; Salesse C
    Langmuir; 2015 Feb; 31(6):1967-79. PubMed ID: 25614992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of antibacterial action of dermaseptin B2: interplay between helix-hinge-helix structure and membrane curvature strain.
    Galanth C; Abbassi F; Lequin O; Ayala-Sanmartin J; Ladram A; Nicolas P; Amiche M
    Biochemistry; 2009 Jan; 48(2):313-27. PubMed ID: 19113844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of the N-terminal segment of human retinol dehydrogenase 11 and its preferential lipid binding using model membranes.
    Lhor M; Méthot M; Horchani H; Salesse C
    Biochim Biophys Acta; 2015 Mar; 1848(3):878-85. PubMed ID: 25542782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of lipid-binding properties of the N-terminal helical segments in human apolipoprotein A-I using fragment peptides.
    Tanaka M; Tanaka T; Ohta S; Kawakami T; Konno H; Akaji K; Aimoto S; Saito H
    J Pept Sci; 2009 Jan; 15(1):36-42. PubMed ID: 19048603
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.