These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22260449)

  • 21. Contributions of the N- and C-terminal helical segments to the lipid-free structure and lipid interaction of apolipoprotein A-I.
    Tanaka M; Dhanasekaran P; Nguyen D; Ohta S; Lund-Katz S; Phillips MC; Saito H
    Biochemistry; 2006 Aug; 45(34):10351-8. PubMed ID: 16922511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The coordinated action of lecithin:retinol acyltransferase and cellular retinol-binding proteins for regulation of vitamin A esterification.
    Mezaki Y; Fujimi TJ; Senoo H; Matsuura T
    Med Hypotheses; 2016 Mar; 88():60-2. PubMed ID: 26880640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of hepatic lecithin:retinol acyltransferase activity by retinoic acid receptor-selective retinoids.
    Shimada T; Ross AC; Muccio DD; Brouillette WJ; Shealy YF
    Arch Biochem Biophys; 1997 Aug; 344(1):220-7. PubMed ID: 9244401
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane-bound lecithin-retinol acyltransferase.
    Rando RR
    Biochem Biophys Res Commun; 2002 Apr; 292(5):1243-50. PubMed ID: 11969222
    [No Abstract]   [Full Text] [Related]  

  • 25. Experimental evidence for predicted transmembrane peptide topography: incorporation of hydrophobic peptide alpha-helical rods with an N-terminal positive charge having a length comparable to the thickness of lipid bilayers into the membranes.
    Katakai R; Wanikawa K; Saga K
    Biopolymers; 1990; 30(7-8):815-9. PubMed ID: 2275981
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Insertion and orientation of a synthetic peptide representing the C-terminus of the A1 domain of Shiga toxin into phospholipid membranes.
    Saleh MT; Ferguson J; Boggs JM; Gariépy J
    Biochemistry; 1996 Jul; 35(29):9325-34. PubMed ID: 8755710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Roles of cysteine 161 and tyrosine 154 in the lecithin-retinol acyltransferase mechanism.
    Xue L; Rando RR
    Biochemistry; 2004 May; 43(20):6120-6. PubMed ID: 15147196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Membrane binding and structure of de novo designed alpha-helical cationic coiled-coil-forming peptides.
    Vagt T; Zschörnig O; Huster D; Koksch B
    Chemphyschem; 2006 Jun; 7(6):1361-71. PubMed ID: 16680794
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis.
    Jiang W; Napoli JL
    Biochim Biophys Acta; 2012 Jul; 1820(7):859-69. PubMed ID: 22498138
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression of a smaller lecithin:retinol acyl transferase transcript and reduced retinol esterification in MCF-7 cells.
    Andreola F; Giandomenico V; Spero R; De Luca LM
    Biochem Biophys Res Commun; 2000 Dec; 279(3):920-4. PubMed ID: 11162450
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retinyl esters are the substrate for isomerohydrolase.
    Moiseyev G; Crouch RK; Goletz P; Oatis J; Redmond TM; Ma JX
    Biochemistry; 2003 Feb; 42(7):2229-38. PubMed ID: 12590612
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vitamin A metabolism in benign and malignant melanocytic skin cells: importance of lecithin/retinol acyltransferase and RPE65.
    Amann PM; Luo C; Owen RW; Hofmann C; Freudenberger M; Schadendorf D; Eichmüller SB; Bazhin AV
    J Cell Physiol; 2012 Feb; 227(2):718-28. PubMed ID: 21465477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tilted peptides: a structural motif involved in protein membrane insertion?
    Lins L; Brasseur R
    J Pept Sci; 2008 Apr; 14(4):416-22. PubMed ID: 18069746
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence that sequence homologous region in LRAT-like proteins possesses anti-proliferative activity and DNA binding properties: translational implications and mechanism of action.
    Simmons DP; Peach ML; Friedman JR; Green MM; Nicklaus MC; De Luca LM
    Carcinogenesis; 2006 Apr; 27(4):693-707. PubMed ID: 16234259
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides.
    Epand RM; Shai Y; Segrest JP; Anantharamaiah GM
    Biopolymers; 1995; 37(5):319-38. PubMed ID: 7632881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amphiphilicity determines binding properties of three mitochondrial presequences to lipid surfaces.
    Hammen PK; Gorenstein DG; Weiner H
    Biochemistry; 1996 Mar; 35(12):3772-81. PubMed ID: 8619998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lecithin retinol acyltransferase contains cysteine residues essential for catalysis.
    Mondal MS; Ruiz A; Bok D; Rando RR
    Biochemistry; 2000 May; 39(17):5215-20. PubMed ID: 10819989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Peptide helicity and membrane surface charge modulate the balance of electrostatic and hydrophobic interactions with lipid bilayers and biological membranes.
    Dathe M; Schümann M; Wieprecht T; Winkler A; Beyermann M; Krause E; Matsuzaki K; Murase O; Bienert M
    Biochemistry; 1996 Sep; 35(38):12612-22. PubMed ID: 8823199
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An amphiphilic lipid-binding domain influences the topology of a signal-anchor sequence in the mitochondrial outer membrane.
    Steenaart NA; Silvius JR; Shore GC
    Biochemistry; 1996 Mar; 35(12):3764-71. PubMed ID: 8619997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.