These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. On the use of optimal internal vibrational coordinates for symmetrical bent triatomic molecules. Zúñiga J; Picón JA; Bastida A; Requena A J Chem Phys; 2005 Jun; 122(22):224319. PubMed ID: 15974680 [TBL] [Abstract][Full Text] [Related]
23. On the Riemannian description of chaotic instability in Hamiltonian dynamics. Pettini M; Valdettaro R Chaos; 1995 Dec; 5(4):646-652. PubMed ID: 12780221 [TBL] [Abstract][Full Text] [Related]
24. A new basis set for molecular bending degrees of freedom. Jutier L J Chem Phys; 2010 Jul; 133(3):034107. PubMed ID: 20649308 [TBL] [Abstract][Full Text] [Related]
25. Toward eliminating the electronic structure bottleneck in nonadiabatic dynamics on the fly: an algorithm to fit nonlocal, quasidiabatic, coupled electronic state Hamiltonians based on ab initio electronic structure data. Zhu X; Yarkony DR J Chem Phys; 2010 Mar; 132(10):104101. PubMed ID: 20232941 [TBL] [Abstract][Full Text] [Related]
26. Using simultaneous diagonalization and trace minimization to make an efficient and simple multidimensional basis for solving the vibrational Schrodinger equation. Dawes R; Carrington T J Chem Phys; 2006 Feb; 124(5):054102. PubMed ID: 16468846 [TBL] [Abstract][Full Text] [Related]
27. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. Ilias M; Saue T J Chem Phys; 2007 Feb; 126(6):064102. PubMed ID: 17313208 [TBL] [Abstract][Full Text] [Related]
28. Computing vibrational energy levels by using mappings to fully exploit the structure of a pruned product basis. Cooper J; Carrington T J Chem Phys; 2009 Jun; 130(21):214110. PubMed ID: 19508059 [TBL] [Abstract][Full Text] [Related]
29. Contracted basis Lanczos methods for computing numerically exact rovibrational levels of methane. Wang XG; Carrington T J Chem Phys; 2004 Aug; 121(7):2937-54. PubMed ID: 15291604 [TBL] [Abstract][Full Text] [Related]
30. On the characterization of three state conical intersections: a quasianalytic theory using a group homomorphism approach. Schuurman MS; Yarkony DR J Chem Phys; 2006 Mar; 124(12):124109. PubMed ID: 16599664 [TBL] [Abstract][Full Text] [Related]
31. Calculation of overtone O-H stretching bands and intensities of the water trimer. Salmi T; Kjaergaard HG; Halonen L J Phys Chem A; 2009 Aug; 113(32):9124-32. PubMed ID: 19621932 [TBL] [Abstract][Full Text] [Related]
32. Towards a highly efficient theoretical treatment of Jahn-Teller effects in molecular spectra: the 1 2A and 2 2A electronic states of the ethoxy radical. Young RA; Yarkony DR J Chem Phys; 2006 Dec; 125(23):234301. PubMed ID: 17190552 [TBL] [Abstract][Full Text] [Related]
33. The relativistic complete active-space second-order perturbation theory with the four-component Dirac Hamiltonian. Abe M; Nakajima T; Hirao K J Chem Phys; 2006 Dec; 125(23):234110. PubMed ID: 17190550 [TBL] [Abstract][Full Text] [Related]
34. Comparison of three enveloping distribution sampling Hamiltonians for the estimation of multiple free energy differences from a single simulation. Christ CD; Van Gunsteren WF J Comput Chem; 2009 Aug; 30(11):1664-79. PubMed ID: 19504591 [TBL] [Abstract][Full Text] [Related]
35. Decoding the dynamical information embedded in highly excited vibrational eigenstates: state space and phase space viewpoints. Manikandan P; Semparithi A; Keshavamurthy S J Phys Chem A; 2009 Mar; 113(9):1717-30. PubMed ID: 19209923 [TBL] [Abstract][Full Text] [Related]
36. New Accurate Fit of an Extended Set of Saturation Data for the nu(3) Band of SF(6): Comparison of Hamiltonians in the Spherical and Cubic Tensor Formalisms. Acef O; Bordé CJ; Clairon A; Pierre G; Sartakov B J Mol Spectrosc; 2000 Feb; 199(2):188-204. PubMed ID: 10637104 [TBL] [Abstract][Full Text] [Related]
37. Reduced dimension discrete variable representation study of cis-trans isomerization in the S1 state of C2H2. Baraban JH; Beck AR; Steeves AH; Stanton JF; Field RW J Chem Phys; 2011 Jun; 134(24):244311. PubMed ID: 21721634 [TBL] [Abstract][Full Text] [Related]
38. The Fock space method of vibrational analysis. Jung C; Taylor HS J Chem Phys; 2010 Jun; 132(23):234303. PubMed ID: 20572701 [TBL] [Abstract][Full Text] [Related]
39. Quantum finance Hamiltonian for coupon bond European and barrier options. Baaquie BE Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 2):036106. PubMed ID: 18517460 [TBL] [Abstract][Full Text] [Related]
40. Molecular structural formulas as one-electron density and hamiltonian operators: the VIF method extended. Alia JD J Phys Chem A; 2007 Mar; 111(12):2307-18. PubMed ID: 17388324 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]