These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22260603)

  • 1. Freezing lines of colloidal Yukawa spheres. I. A Rogers-Young integral equation study.
    Gapinski J; Nägele G; Patkowski A
    J Chem Phys; 2012 Jan; 136(2):024507. PubMed ID: 22260603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freezing lines of colloidal Yukawa spheres. II. Local structure and characteristic lengths.
    Gapinski J; Nägele G; Patkowski A
    J Chem Phys; 2014 Sep; 141(12):124505. PubMed ID: 25273449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pair structure of the hard-sphere Yukawa fluid: an improved analytic method versus simulations, Rogers-Young scheme, and experiment.
    Heinen M; Holmqvist P; Banchio AJ; Nägele G
    J Chem Phys; 2011 Jan; 134(4):044532. PubMed ID: 21280773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generic behavior of the hydrodynamic function of charged colloidal suspensions.
    Gapinski J; Patkowski A; Nägele G
    J Chem Phys; 2010 Feb; 132(5):054510. PubMed ID: 20136325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and short-time dynamics in suspensions of charged silica spheres in the entire fluid regime.
    Gapinski J; Patkowski A; Banchio AJ; Buitenhuis J; Holmqvist P; Lettinga MP; Meier G; Nägele G
    J Chem Phys; 2009 Feb; 130(8):084503. PubMed ID: 19256611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting and freezing lines for a mixture of charged colloidal spheres with spindle-type phase diagram.
    Lorenz NJ; Palberg T
    J Chem Phys; 2010 Sep; 133(10):104501. PubMed ID: 20849172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heating-induced freezing and melting transitions in charged colloids.
    Toyotama A; Yamanaka J
    Langmuir; 2011 Mar; 27(5):1569-72. PubMed ID: 21210635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short-time rheology and diffusion in suspensions of Yukawa-type colloidal particles.
    Heinen M; Banchio AJ; Nägele G
    J Chem Phys; 2011 Oct; 135(15):154504. PubMed ID: 22029321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing of charged colloids in slit pores.
    Grandner S; Klapp SH
    J Chem Phys; 2008 Dec; 129(24):244703. PubMed ID: 19123522
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulations of wave propagation and disorder in 3D non-close-packed colloidal photonic crystals with low refractive index contrast.
    Glushko O; Meisels R; Kuchar F
    Opt Express; 2010 Mar; 18(7):7101-7. PubMed ID: 20389731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sterically stabilized colloids with tunable repulsions.
    van Gruijthuijsen K; Obiols-Rabasa M; Heinen M; Nägele G; Stradner A
    Langmuir; 2013 Sep; 29(36):11199-207. PubMed ID: 23937718
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and short-time dynamics in concentrated suspensions of charged colloids.
    Westermeier F; Fischer B; Roseker W; Grübel G; ägele G; Heinen M
    J Chem Phys; 2012 Sep; 137(11):114504. PubMed ID: 22998268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-regulated electrostatic interactions in colloidal suspensions.
    Plunkett KN; Mohraz A; Haasch RT; Lewis JA; Moore JS
    J Am Chem Soc; 2005 Oct; 127(42):14574-5. PubMed ID: 16231901
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oppositely charged model ceramic colloids: numerical predictions and experimental observations by confocal laser scanning microscopy.
    Piechowiak MA; Videcoq A; Rossignol F; Pagnoux C; Carrion C; Cerbelaud M; Ferrando R
    Langmuir; 2010 Aug; 26(15):12540-7. PubMed ID: 20604541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-wavelength transverse modes in charged colloidal crystals.
    Tata BV; Mohanty PS; Valsakumar MC; Yamanaka J
    Phys Rev Lett; 2004 Dec; 93(26 Pt 1):268303. PubMed ID: 15698034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple patchy colloid model for the phase behavior of lysozyme dispersions.
    Gögelein C; Nägele G; Tuinier R; Gibaud T; Stradner A; Schurtenberger P
    J Chem Phys; 2008 Aug; 129(8):085102. PubMed ID: 19044852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional freezing criteria for crystallizing colloidal monolayers.
    Wang Z; Alsayed AM; Yodh AG; Han Y
    J Chem Phys; 2010 Apr; 132(15):154501. PubMed ID: 20423183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Precise simulation of the freezing transition of supercritical Lennard-Jones.
    Nayhouse M; Amlani AM; Orkoulas G
    J Chem Phys; 2011 Oct; 135(15):154103. PubMed ID: 22029293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational study of the melting-freezing transition in the quantum hard-sphere system for intermediate densities. II. Structural features.
    Sesé LM; Bailey LE
    J Chem Phys; 2007 Apr; 126(16):164509. PubMed ID: 17477616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two features at the two-dimensional freezing transitions.
    Wang Z; Qi W; Peng Y; Alsayed AM; Chen Y; Tong P; Han Y
    J Chem Phys; 2011 Jan; 134(3):034506. PubMed ID: 21261367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.