These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. How fast does water flow in carbon nanotubes? Kannam SK; Todd BD; Hansen JS; Daivis PJ J Chem Phys; 2013 Mar; 138(9):094701. PubMed ID: 23485316 [TBL] [Abstract][Full Text] [Related]
4. Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations. Sam A; Hartkamp R; Kannam SK; Sathian SP Nanotechnology; 2018 Nov; 29(48):485404. PubMed ID: 30207542 [TBL] [Abstract][Full Text] [Related]
5. Strain engineering water transport in graphene nanochannels. Xiong W; Liu JZ; Ma M; Xu Z; Sheridan J; Zheng Q Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056329. PubMed ID: 22181520 [TBL] [Abstract][Full Text] [Related]
7. Interfacial friction based quasi-continuum hydrodynamical model for nanofluidic transport of water. Bhadauria R; Sanghi T; Aluru NR J Chem Phys; 2015 Nov; 143(17):174702. PubMed ID: 26547177 [TBL] [Abstract][Full Text] [Related]
8. Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. Priezjev NV J Chem Phys; 2011 Nov; 135(20):204704. PubMed ID: 22128949 [TBL] [Abstract][Full Text] [Related]
9. Wetting and interfacial properties of water nanodroplets in contact with graphene and monolayer boron-nitride sheets. Li H; Zeng XC ACS Nano; 2012 Mar; 6(3):2401-9. PubMed ID: 22356158 [TBL] [Abstract][Full Text] [Related]
10. Ultralow liquid/solid friction in carbon nanotubes: comprehensive theory for alcohols, alkanes, OMCTS, and water. Falk K; Sedlmeier F; Joly L; Netz RR; Bocquet L Langmuir; 2012 Oct; 28(40):14261-72. PubMed ID: 22974715 [TBL] [Abstract][Full Text] [Related]
11. Interfacial water at hydrophobic and hydrophilic surfaces: slip, viscosity, and diffusion. Sendner C; Horinek D; Bocquet L; Netz RR Langmuir; 2009 Sep; 25(18):10768-81. PubMed ID: 19591481 [TBL] [Abstract][Full Text] [Related]
12. Stick-slip control in nanoscale boundary lubrication by surface wettability. Chen W; Foster AS; Alava MJ; Laurson L Phys Rev Lett; 2015 Mar; 114(9):095502. PubMed ID: 25793825 [TBL] [Abstract][Full Text] [Related]
14. Effect of nanochannel dimension on the transport of water molecules. Su J; Guo H J Phys Chem B; 2012 May; 116(20):5925-32. PubMed ID: 22448756 [TBL] [Abstract][Full Text] [Related]
15. Hydrodynamic slip length as a surface property. Ramos-Alvarado B; Kumar S; Peterson GP Phys Rev E; 2016 Feb; 93(2):023101. PubMed ID: 26986407 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics study of nanoconfined water flow driven by rotating electric fields under realistic experimental conditions. De Luca S; Todd BD; Hansen JS; Daivis PJ Langmuir; 2014 Mar; 30(11):3095-109. PubMed ID: 24575940 [TBL] [Abstract][Full Text] [Related]
17. What is the contact angle of water on graphene? Taherian F; Marcon V; van der Vegt NF; Leroy F Langmuir; 2013 Feb; 29(5):1457-65. PubMed ID: 23320893 [TBL] [Abstract][Full Text] [Related]
18. Polarizability effects in molecular dynamics simulations of the graphene-water interface. Ho TA; Striolo A J Chem Phys; 2013 Feb; 138(5):054117. PubMed ID: 23406108 [TBL] [Abstract][Full Text] [Related]
19. Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure. Wang L; Dumont RS; Dickson JM J Chem Phys; 2012 Jul; 137(4):044102. PubMed ID: 22852592 [TBL] [Abstract][Full Text] [Related]
20. Slip length crossover on a graphene surface. Liang Z; Keblinski P J Chem Phys; 2015 Apr; 142(13):134701. PubMed ID: 25854252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]