BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 22260616)

  • 1. Amino acid analogues bind to carbon nanotube via π-π interactions: comparison of molecular mechanical and quantum mechanical calculations.
    Yang Z; Wang Z; Tian X; Xiu P; Zhou R
    J Chem Phys; 2012 Jan; 136(2):025103. PubMed ID: 22260616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and properties of aromatic amino acids on single-walled carbon nanotubes.
    Wang C; Li S; Zhang R; Lin Z
    Nanoscale; 2012 Feb; 4(4):1146-53. PubMed ID: 22095051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical study on the interaction of aromatic amino acids with graphene and single walled carbon nanotube.
    Rajesh C; Majumder C; Mizuseki H; Kawazoe Y
    J Chem Phys; 2009 Mar; 130(12):124911. PubMed ID: 19334893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of the chirality and curvature of carbon nanostructures on their interaction with aromatics and amino acids.
    Umadevi D; Sastry GN
    Chemphyschem; 2013 Aug; 14(11):2570-8. PubMed ID: 23650176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum Mechanical Quantification of Weakly Interacting Complexes of Peptides with Single-Walled Carbon Nanotubes.
    Fan W; Zeng J; Zhang R
    J Chem Theory Comput; 2009 Oct; 5(10):2879-85. PubMed ID: 26631799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding preference of carbon nanotube over proline-rich motif ligand on SH3-domain: a comparison with different force fields.
    Shi B; Zuo G; Xiu P; Zhou R
    J Phys Chem B; 2013 Apr; 117(13):3541-7. PubMed ID: 23477344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Empirical formulation and parameterization of cation-π interactions for protein modeling.
    Du QS; Long SY; Meng JZ; Huang RB
    J Comput Chem; 2012 Jan; 33(2):153-62. PubMed ID: 21997880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational Impact on Amino Acid-Surface π-π Interactions on a (7,7) Single-Walled Carbon Nanotube: A Molecular Mechanics Approach.
    Grabill L; Riemann A
    J Phys Chem A; 2018 Feb; 122(6):1713-1726. PubMed ID: 29327587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The devil and holy water: protein and carbon nanotube hybrids.
    Calvaresi M; Zerbetto F
    Acc Chem Res; 2013 Nov; 46(11):2454-63. PubMed ID: 23826731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MP2, density functional theory, and molecular mechanical calculations of C-H...pi and hydrogen bond interactions in a cellulose-binding module-cellulose model system.
    Mohamed MN; Watts HD; Guo J; Catchmark JM; Kubicki JD
    Carbohydr Res; 2010 Aug; 345(12):1741-51. PubMed ID: 20580346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of standard force field models against high-quality ab initio potential curves for prototypes of pi-pi, CH/pi, and SH/pi interactions.
    Sherrill CD; Sumpter BG; Sinnokrot MO; Marshall MS; Hohenstein EG; Walker RC; Gould IR
    J Comput Chem; 2009 Nov; 30(14):2187-93. PubMed ID: 19242959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lennard-Jones parameters for small diameter carbon nanotubes and water for molecular mechanics simulations from van der Waals density functional calculations.
    Kaukonen M; Gulans A; Havu P; Kauppinen E
    J Comput Chem; 2012 Mar; 33(6):652-8. PubMed ID: 22228486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elastic deformation of carbon-nanotube nanorings.
    Zheng M; Ke C
    Small; 2010 Aug; 6(15):1647-55. PubMed ID: 20623528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of aromatic content for peptide/single-walled carbon nanotube interactions.
    Zorbas V; Smith AL; Xie H; Ortiz-Acevedo A; Dalton AB; Dieckmann GR; Draper RK; Baughman RH; Musselman IH
    J Am Chem Soc; 2005 Sep; 127(35):12323-8. PubMed ID: 16131210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A density-functional study on pi-aromatic interaction: benzene dimer and naphthalene dimer.
    Sato T; Tsuneda T; Hirao K
    J Chem Phys; 2005 Sep; 123(10):104307. PubMed ID: 16178597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Endohedral and exohedral complexes of substituted benzenes with carbon nanotubes and graphene.
    Munusamy E; Wheeler SE
    J Chem Phys; 2013 Sep; 139(9):094703. PubMed ID: 24028126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CH/pi interactions involving aromatic amino acids: refinement of the CHARMM tryptophan force field.
    Macias AT; Mackerell AD
    J Comput Chem; 2005 Nov; 26(14):1452-63. PubMed ID: 16088926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adsorption of insulin peptide on charged single-walled carbon nanotubes: significant role of ordered water molecules.
    Shen JW; Wu T; Wang Q; Kang Y; Chen X
    Chemphyschem; 2009 Jun; 10(8):1260-9. PubMed ID: 19353602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Noncovalent interaction of carbon nanostructures.
    Umadevi D; Panigrahi S; Sastry GN
    Acc Chem Res; 2014 Aug; 47(8):2574-81. PubMed ID: 25032482
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.