These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. High performance bipolar resistive switching memory devices based on Zn2SnO4 nanowires. Dong H; Zhang X; Zhao D; Niu Z; Zeng Q; Li J; Cai L; Wang Y; Zhou W; Gao M; Xie S Nanoscale; 2012 Apr; 4(8):2571-4. PubMed ID: 22419367 [TBL] [Abstract][Full Text] [Related]
7. Tuning of nonvolatile bipolar memristive switching in Co(III) polymer with an extended azo aromatic ligand. Bandyopadhyay A; Sahu S; Higuchi M J Am Chem Soc; 2011 Feb; 133(5):1168-71. PubMed ID: 21210686 [TBL] [Abstract][Full Text] [Related]
8. Analog memory and spike-timing-dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching device. Seo K; Kim I; Jung S; Jo M; Park S; Park J; Shin J; Biju KP; Kong J; Lee K; Lee B; Hwang H Nanotechnology; 2011 Jun; 22(25):254023. PubMed ID: 21572200 [TBL] [Abstract][Full Text] [Related]
9. Device and SPICE modeling of RRAM devices. Sheridan P; Kim KH; Gaba S; Chang T; Chen L; Lu W Nanoscale; 2011 Sep; 3(9):3833-40. PubMed ID: 21847501 [TBL] [Abstract][Full Text] [Related]
10. Light-Gated Memristor with Integrated Logic and Memory Functions. Tan H; Liu G; Yang H; Yi X; Pan L; Shang J; Long S; Liu M; Wu Y; Li RW ACS Nano; 2017 Nov; 11(11):11298-11305. PubMed ID: 29028312 [TBL] [Abstract][Full Text] [Related]
11. Quantum Conductance in Memristive Devices: Fundamentals, Developments, and Applications. Milano G; Aono M; Boarino L; Celano U; Hasegawa T; Kozicki M; Majumdar S; Menghini M; Miranda E; Ricciardi C; Tappertzhofen S; Terabe K; Valov I Adv Mater; 2022 Aug; 34(32):e2201248. PubMed ID: 35404522 [TBL] [Abstract][Full Text] [Related]
12. Memristive switching of single-component metallic nanowires. Johnson SL; Sundararajan A; Hunley DP; Strachan DR Nanotechnology; 2010 Mar; 21(12):125204. PubMed ID: 20203360 [TBL] [Abstract][Full Text] [Related]
13. Diffusive Memristive Switching on the Nanoscale, from Individual Nanoparticles towards Scalable Nanocomposite Devices. Vahl A; Carstens N; Strunskus T; Faupel F; Hassanien A Sci Rep; 2019 Nov; 9(1):17367. PubMed ID: 31758021 [TBL] [Abstract][Full Text] [Related]
14. Atomically Thin Femtojoule Memristive Device. Zhao H; Dong Z; Tian H; DiMarzi D; Han MG; Zhang L; Yan X; Liu F; Shen L; Han SJ; Cronin S; Wu W; Tice J; Guo J; Wang H Adv Mater; 2017 Dec; 29(47):. PubMed ID: 29067743 [TBL] [Abstract][Full Text] [Related]
15. Observation of two resistance switching modes in TiO2 memristive devices electroformed at low current. Miao F; Joshua Yang J; Borghetti J; Medeiros-Ribeiro G; Stanley Williams R Nanotechnology; 2011 Jun; 22(25):254007. PubMed ID: 21572203 [TBL] [Abstract][Full Text] [Related]
16. Multilevel Nonvolatile Memristive and Memcapacitive Switching in Stacked Graphene Sheets. Park M; Park S; Yoo KH ACS Appl Mater Interfaces; 2016 Jun; 8(22):14046-52. PubMed ID: 27203557 [TBL] [Abstract][Full Text] [Related]
17. A neuromorphic systems approach to in-memory computing with non-ideal memristive devices: from mitigation to exploitation. Payvand M; Nair MV; Müller LK; Indiveri G Faraday Discuss; 2019 Feb; 213(0):487-510. PubMed ID: 30357205 [TBL] [Abstract][Full Text] [Related]
18. A 250 mV Cu/SiO2/W Memristor with Half-Integer Quantum Conductance States. Nandakumar SR; Minvielle M; Nagar S; Dubourdieu C; Rajendran B Nano Lett; 2016 Mar; 16(3):1602-8. PubMed ID: 26849776 [TBL] [Abstract][Full Text] [Related]
19. A fast operation of nanometer-scale metallic memristors: highly transparent conductance channels in Ag2S devices. Geresdi A; Csontos M; Gubicza A; Halbritter A; Mihály G Nanoscale; 2014 Mar; 6(5):2613-7. PubMed ID: 24481239 [TBL] [Abstract][Full Text] [Related]
20. Metastable memristive lines for signal transmission and information processing applications. Slipko VA; Pershin YV Phys Rev E; 2017 Apr; 95(4-1):042213. PubMed ID: 28505797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]