These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 22260981)

  • 1. Calcium imaging of multiple neurons in freely behaving C. elegans.
    Zheng M; Cao P; Yang J; Xu XZ; Feng Z
    J Neurosci Methods; 2012 Apr; 206(1):78-82. PubMed ID: 22260981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated imaging of neuronal activity in freely behaving Caenorhabditis elegans.
    Ben Arous J; Tanizawa Y; Rabinowitch I; Chatenay D; Schafer WR
    J Neurosci Methods; 2010 Mar; 187(2):229-34. PubMed ID: 20096306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new platform for long-term tracking and recording of neural activity and simultaneous optogenetic control in freely behaving Caenorhabditis elegans.
    Gengyo-Ando K; Kagawa-Nagamura Y; Ohkura M; Fei X; Chen M; Hashimoto K; Nakai J
    J Neurosci Methods; 2017 Jul; 286():56-68. PubMed ID: 28506879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An imbalancing act: gap junctions reduce the backward motor circuit activity to bias C. elegans for forward locomotion.
    Kawano T; Po MD; Gao S; Leung G; Ryu WS; Zhen M
    Neuron; 2011 Nov; 72(4):572-86. PubMed ID: 22099460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing Calcium Flux in Freely Moving Nematode Embryos.
    Ardiel EL; Kumar A; Marbach J; Christensen R; Gupta R; Duncan W; Daniels JS; Stuurman N; Colón-Ramos D; Shroff H
    Biophys J; 2017 May; 112(9):1975-1983. PubMed ID: 28494967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ratiometric Calcium Imaging of Individual Neurons in Behaving Caenorhabditis Elegans.
    Ravi B; Nassar LM; Kopchock RJ; Dhakal P; Scheetz M; Collins KM
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29443112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans.
    Piggott BJ; Liu J; Feng Z; Wescott SA; Xu XZ
    Cell; 2011 Nov; 147(4):922-33. PubMed ID: 22078887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glia Modulate a Neuronal Circuit for Locomotion Suppression during Sleep in C. elegans.
    Katz M; Corson F; Iwanir S; Biron D; Shaham S
    Cell Rep; 2018 Mar; 22(10):2575-2583. PubMed ID: 29514087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in
    Cermak N; Yu SK; Clark R; Huang YC; Baskoylu SN; Flavell SW
    Elife; 2020 Jun; 9():. PubMed ID: 32510332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans.
    Nguyen JP; Shipley FB; Linder AN; Plummer GS; Liu M; Setru SU; Shaevitz JW; Leifer AM
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):E1074-81. PubMed ID: 26712014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decoding locomotion from population neural activity in moving
    Hallinen KM; Dempsey R; Scholz M; Yu X; Linder A; Randi F; Sharma AK; Shaevitz JW; Leifer AM
    Elife; 2021 Jul; 10():. PubMed ID: 34323218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FLP-18 Functions through the G-Protein-Coupled Receptors NPR-1 and NPR-4 to Modulate Reversal Length in
    Bhardwaj A; Thapliyal S; Dahiya Y; Babu K
    J Neurosci; 2018 May; 38(20):4641-4654. PubMed ID: 29712787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral control by depolarized and hyperpolarized states of an integrating neuron.
    Sordillo A; Bargmann CI
    Elife; 2021 Nov; 10():. PubMed ID: 34738904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible and titratable silencing of Caenorhabditis elegans neurons in vivo with histamine-gated chloride channels.
    Pokala N; Liu Q; Gordus A; Bargmann CI
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2770-5. PubMed ID: 24550306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuronal control of locomotion in C. elegans is modified by a dominant mutation in the GLR-1 ionotropic glutamate receptor.
    Zheng Y; Brockie PJ; Mellem JE; Madsen DM; Maricq AV
    Neuron; 1999 Oct; 24(2):347-61. PubMed ID: 10571229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal activity patterns in thermosensory neurons of freely moving Caenorhabditis elegans encode spatial thermal gradients.
    Clark DA; Gabel CV; Gabel H; Samuel AD
    J Neurosci; 2007 Jun; 27(23):6083-90. PubMed ID: 17553981
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An image-free opto-mechanical system for creating virtual environments and imaging neuronal activity in freely moving Caenorhabditis elegans.
    Faumont S; Rondeau G; Thiele TR; Lawton KJ; McCormick KE; Sottile M; Griesbeck O; Heckscher ES; Roberts WM; Doe CQ; Lockery SR
    PLoS One; 2011; 6(9):e24666. PubMed ID: 21969859
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans.
    Chronis N; Zimmer M; Bargmann CI
    Nat Methods; 2007 Sep; 4(9):727-31. PubMed ID: 17704783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Locomotory Behavior of
    Bhardwaj A; Pandey P; Babu K
    Genetics; 2020 Jan; 214(1):135-145. PubMed ID: 31740450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous optogenetic manipulation and calcium imaging in freely moving C. elegans.
    Shipley FB; Clark CM; Alkema MJ; Leifer AM
    Front Neural Circuits; 2014; 8():28. PubMed ID: 24715856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.