These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 22261053)
1. Modeling the binding of three toxins to the voltage-gated potassium channel (Kv1.3). Chen R; Robinson A; Gordon D; Chung SH Biophys J; 2011 Dec; 101(11):2652-60. PubMed ID: 22261053 [TBL] [Abstract][Full Text] [Related]
2. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels. Gao YD; Garcia ML Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539 [TBL] [Abstract][Full Text] [Related]
3. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases. Chen R; Chung SH Biochemistry; 2012 Mar; 51(9):1976-82. PubMed ID: 22352687 [TBL] [Abstract][Full Text] [Related]
4. Brownian dynamics simulations of the recognition of the scorpion toxin maurotoxin with the voltage-gated potassium ion channels. Fu W; Cui M; Briggs JM; Huang X; Xiong B; Zhang Y; Luo X; Shen J; Ji R; Jiang H; Chen K Biophys J; 2002 Nov; 83(5):2370-85. PubMed ID: 12414674 [TBL] [Abstract][Full Text] [Related]
5. Molecular dynamics simulations of scorpion toxin recognition by the Ca(2+)-activated potassium channel KCa3.1. Chen R; Chung SH Biophys J; 2013 Oct; 105(8):1829-37. PubMed ID: 24138859 [TBL] [Abstract][Full Text] [Related]
6. Charybdotoxin unbinding from the mKv1.3 potassium channel: a combined computational and experimental study. Khabiri M; Nikouee A; Cwiklik L; Grissmer S; Ettrich R J Phys Chem B; 2011 Oct; 115(39):11490-500. PubMed ID: 21877740 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics of Kv1.3 ion channel and structural basis of its inhibition by scorpion toxin-OSK1 derivatives. Bhuyan R; Seal A Biophys Chem; 2015; 203-204():1-11. PubMed ID: 26001067 [TBL] [Abstract][Full Text] [Related]
8. Hetlaxin, a new toxin from the Heterometrus laoticus scorpion venom, interacts with voltage-gated potassium channel Kv1.3. Anh HN; Hoang Vdo M; Kudryashova KS; Nekrasova OV; Feofanov AV; Andreeva TV; Tsetlin VI; Utkin YN Dokl Biochem Biophys; 2013; 449():109-11. PubMed ID: 23657660 [No Abstract] [Full Text] [Related]
9. A C-terminally amidated analogue of ShK is a potent and selective blocker of the voltage-gated potassium channel Kv1.3. Pennington MW; Harunur Rashid M; Tajhya RB; Beeton C; Kuyucak S; Norton RS FEBS Lett; 2012 Nov; 586(22):3996-4001. PubMed ID: 23063513 [TBL] [Abstract][Full Text] [Related]
10. Mutating a critical lysine in ShK toxin alters its binding configuration in the pore-vestibule region of the voltage-gated potassium channel, Kv1.3. Lanigan MD; Kalman K; Lefievre Y; Pennington MW; Chandy KG; Norton RS Biochemistry; 2002 Oct; 41(40):11963-71. PubMed ID: 12356296 [TBL] [Abstract][Full Text] [Related]
11. Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. Rauer H; Pennington M; Cahalan M; Chandy KG J Biol Chem; 1999 Jul; 274(31):21885-92. PubMed ID: 10419508 [TBL] [Abstract][Full Text] [Related]
12. Free energy simulations of binding of HsTx1 toxin to Kv1 potassium channels: the basis of Kv1.3/Kv1.1 selectivity. Rashid MH; Kuyucak S J Phys Chem B; 2014 Jan; 118(3):707-16. PubMed ID: 24397610 [TBL] [Abstract][Full Text] [Related]
13. A model of scorpion toxin binding to voltage-gated K+ channels. Lipkind GM; Fozzard HA J Membr Biol; 1997 Aug; 158(3):187-96. PubMed ID: 9263881 [TBL] [Abstract][Full Text] [Related]
14. Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Yu K; Fu W; Liu H; Luo X; Chen KX; Ding J; Shen J; Jiang H Biophys J; 2004 Jun; 86(6):3542-55. PubMed ID: 15189853 [TBL] [Abstract][Full Text] [Related]
15. N-Terminally extended analogues of the K⁺ channel toxin from Stichodactyla helianthus as potent and selective blockers of the voltage-gated potassium channel Kv1.3. Chang SC; Huq R; Chhabra S; Beeton C; Pennington MW; Smith BJ; Norton RS FEBS J; 2015 Jun; 282(12):2247-59. PubMed ID: 25864722 [TBL] [Abstract][Full Text] [Related]
16. Charybdotoxin and margatoxin acting on the human voltage-gated potassium channel hKv1.3 and its H399N mutant: an experimental and computational comparison. Nikouee A; Khabiri M; Grissmer S; Ettrich R J Phys Chem B; 2012 May; 116(17):5132-40. PubMed ID: 22490327 [TBL] [Abstract][Full Text] [Related]
17. Permeation and block of the Kv1.2 channel examined using brownian and molecular dynamics. Gordon D; Chung SH Biophys J; 2011 Dec; 101(11):2671-8. PubMed ID: 22261055 [TBL] [Abstract][Full Text] [Related]
18. Structural basis of the selective block of Kv1.2 by maurotoxin from computer simulations. Chen R; Chung SH PLoS One; 2012; 7(10):e47253. PubMed ID: 23071772 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the Inhibitory Peptides ShK and HmK with the Voltage-Gated Potassium Channel K Sanches K; Prypoten V; Chandy KG; Chalmers DK; Norton RS J Chem Inf Model; 2023 May; 63(10):3043-3053. PubMed ID: 37143234 [TBL] [Abstract][Full Text] [Related]
20. The investigation of interactions of kappa-Hefutoxin1 with the voltage-gated potassium channels: a computational simulation. Zarrabi M; Naderi-Manesh H Proteins; 2008 May; 71(3):1441-9. PubMed ID: 18076029 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]