BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 22261065)

  • 1. The loop 5 element structurally and kinetically coordinates dimers of the human kinesin-5, Eg5.
    Waitzman JS; Larson AG; Cochran JC; Naber N; Cooke R; Jon Kull F; Pate E; Rice SE
    Biophys J; 2011 Dec; 101(11):2760-9. PubMed ID: 22261065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The conserved L5 loop establishes the pre-powerstroke conformation of the Kinesin-5 motor, eg5.
    Larson AG; Naber N; Cooke R; Pate E; Rice SE
    Biophys J; 2010 Jun; 98(11):2619-27. PubMed ID: 20513406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocontrol of mitotic kinesin Eg5 facilitated by thiol-reactive photochromic molecules incorporated into the loop L5 functional loop.
    Ishikawa K; Tamura Y; Maruta S
    J Biochem; 2014 Mar; 155(3):195-206. PubMed ID: 24334276
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics and motility of the Eg5 microtubule motor.
    Lockhart A; Cross RA
    Biochemistry; 1996 Feb; 35(7):2365-73. PubMed ID: 8652578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monastrol inhibition of the mitotic kinesin Eg5.
    Cochran JC; Gatial JE; Kapoor TM; Gilbert SP
    J Biol Chem; 2005 Apr; 280(13):12658-67. PubMed ID: 15665380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic analysis of the mitotic kinesin Eg5.
    Cochran JC; Sontag CA; Maliga Z; Kapoor TM; Correia JJ; Gilbert SP
    J Biol Chem; 2004 Sep; 279(37):38861-70. PubMed ID: 15247293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ATPase mechanism of Eg5 in the absence of microtubules: insight into microtubule activation and allosteric inhibition by monastrol.
    Cochran JC; Gilbert SP
    Biochemistry; 2005 Dec; 44(50):16633-48. PubMed ID: 16342954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of the interaction of the Eg5 Loop5 with the nucleotide site.
    Harrington TD; Naber N; Larson AG; Cooke R; Rice SE; Pate E
    J Theor Biol; 2011 Nov; 289():107-15. PubMed ID: 21872609
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loop L5 assumes three distinct orientations during the ATPase cycle of the mitotic kinesin Eg5: a transient and time-resolved fluorescence study.
    Muretta JM; Behnke-Parks WM; Major J; Petersen KJ; Goulet A; Moores CA; Thomas DD; Rosenfeld SS
    J Biol Chem; 2013 Nov; 288(48):34839-49. PubMed ID: 24145034
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force and premature binding of ADP can regulate the processivity of individual Eg5 dimers.
    Valentine MT; Block SM
    Biophys J; 2009 Sep; 97(6):1671-7. PubMed ID: 19751672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A structural model for monastrol inhibition of dimeric kinesin Eg5.
    Krzysiak TC; Wendt T; Sproul LR; Tittmann P; Gross H; Gilbert SP; Hoenger A
    EMBO J; 2006 May; 25(10):2263-73. PubMed ID: 16642039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of the mitotic inhibitor monastrol with human kinesin Eg5.
    DeBonis S; Simorre JP; Crevel I; Lebeau L; Skoufias DA; Blangy A; Ebel C; Gans P; Cross R; Hackney DD; Wade RH; Kozielski F
    Biochemistry; 2003 Jan; 42(2):338-49. PubMed ID: 12525161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chimeric kinesin-1 head/kinesin-5 tail motor switches between diffusive and processive motility.
    Thiede C; Lakämper S; Wessel AD; Kramer S; Schmidt CF
    Biophys J; 2013 Jan; 104(2):432-41. PubMed ID: 23442865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disparity in allosteric interactions of monastrol with Eg5 in the presence of ADP and ATP: a difference FT-IR investigation.
    Wojcik EJ; Dalrymple NA; Alford SR; Walker RA; Kim S
    Biochemistry; 2004 Aug; 43(31):9939-49. PubMed ID: 15287721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of kinesin half-site ADP release and kinetic processivity by a spacer between the head groups.
    Hackney DD; Stock MF; Moore J; Patterson RA
    Biochemistry; 2003 Oct; 42(41):12011-8. PubMed ID: 14556632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The marine natural product adociasulfate-2 as a tool to identify the MT-binding region of kinesins.
    Brier S; Carletti E; DeBonis S; Hewat E; Lemaire D; Kozielski F
    Biochemistry; 2006 Dec; 45(51):15644-53. PubMed ID: 17176086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleotide-dependent displacement and dynamics of the α-1 helix in kinesin revealed by site-directed spin labeling EPR.
    Yasuda S; Yanagi T; Yamada MD; Ueki S; Maruta S; Inoue A; Arata T
    Biochem Biophys Res Commun; 2014 Jan; 443(3):911-6. PubMed ID: 24361895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-resolution structures of kinesin on microtubules provide a basis for nucleotide-gated force-generation.
    Shang Z; Zhou K; Xu C; Csencsits R; Cochran JC; Sindelar CV
    Elife; 2014 Nov; 3():e04686. PubMed ID: 25415053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Getting in sync with dimeric Eg5. Initiation and regulation of the processive run.
    Krzysiak TC; Grabe M; Gilbert SP
    J Biol Chem; 2008 Jan; 283(4):2078-87. PubMed ID: 18037705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic mechanism of monomeric non-claret disjunctional protein (Ncd) ATPase.
    Pechatnikova E; Taylor EW
    J Biol Chem; 1997 Dec; 272(49):30735-40. PubMed ID: 9388211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.