These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
256 related articles for article (PubMed ID: 22261237)
1. Pre-infection of pigs with Mycoplasma hyopneumoniae modifies outcomes of infection with European swine influenza virus of H1N1, but not H1N2, subtype. Deblanc C; Gorin S; Quéguiner S; Gautier-Bouchardon AV; Ferré S; Amenna N; Cariolet R; Simon G Vet Microbiol; 2012 May; 157(1-2):96-105. PubMed ID: 22261237 [TBL] [Abstract][Full Text] [Related]
2. Genetic and biological characterisation of an avian-like H1N2 swine influenza virus generated by reassortment of circulating avian-like H1N1 and H3N2 subtypes in Denmark. Trebbien R; Bragstad K; Larsen LE; Nielsen J; Bøtner A; Heegaard PM; Fomsgaard A; Viuff B; Hjulsager CK Virol J; 2013 Sep; 10():290. PubMed ID: 24047399 [TBL] [Abstract][Full Text] [Related]
3. Pre-infection of pigs with Mycoplasma hyopneumoniae induces oxidative stress that influences outcomes of a subsequent infection with a swine influenza virus of H1N1 subtype. Deblanc C; Robert F; Pinard T; Gorin S; Quéguiner S; Gautier-Bouchardon AV; Ferré S; Garraud JM; Cariolet R; Brack M; Simon G Vet Microbiol; 2013 Mar; 162(2-4):643-651. PubMed ID: 23266108 [TBL] [Abstract][Full Text] [Related]
4. Experimental dual infection of pigs with an H1N1 swine influenza virus (A/Sw/Hok/2/81) and Mycoplasma hyopneumoniae. Yazawa S; Okada M; Ono M; Fujii S; Okuda Y; Shibata I; Kida H Vet Microbiol; 2004 Mar; 98(3-4):221-8. PubMed ID: 15036530 [TBL] [Abstract][Full Text] [Related]
5. Serological profiles after consecutive experimental infections of pigs with European H1N1, H3N2, and H1N2 swine influenza viruses. Van Reeth K; Labarque G; Pensaert M Viral Immunol; 2006; 19(3):373-82. PubMed ID: 16987057 [TBL] [Abstract][Full Text] [Related]
6. Comparative pathology of pigs infected with Korean H1N1, H1N2, or H3N2 swine influenza A viruses. Lyoo KS; Kim JK; Jung K; Kang BK; Song D Virol J; 2014 Sep; 11():170. PubMed ID: 25253051 [TBL] [Abstract][Full Text] [Related]
7. Pathogenesis and subsequent cross-protection of influenza virus infection in pigs sustained by an H1N2 strain. Ferrari M; Borghetti P; Foni E; Robotti C; Di Lecce R; Corradi A; Petrini S; Bottarelli E Zoonoses Public Health; 2010 Jun; 57(4):273-80. PubMed ID: 19538454 [TBL] [Abstract][Full Text] [Related]
8. Enhanced pneumonia and disease in pigs vaccinated with an inactivated human-like (δ-cluster) H1N2 vaccine and challenged with pandemic 2009 H1N1 influenza virus. Gauger PC; Vincent AL; Loving CL; Lager KM; Janke BH; Kehrli ME; Roth JA Vaccine; 2011 Mar; 29(15):2712-9. PubMed ID: 21310191 [TBL] [Abstract][Full Text] [Related]
9. [Swine influenza virus: evolution mechanism and epidemic characterization--a review]. Qi X; Lu C Wei Sheng Wu Xue Bao; 2009 Sep; 49(9):1138-45. PubMed ID: 20030049 [TBL] [Abstract][Full Text] [Related]
11. Coinfection modulates inflammatory responses, clinical outcome and pathogen load of H1N1 swine influenza virus and Haemophilus parasuis infections in pigs. Pomorska-Mól M; Dors A; Kwit K; Czyżewska-Dors E; Pejsak Z BMC Vet Res; 2017 Dec; 13(1):376. PubMed ID: 29202835 [TBL] [Abstract][Full Text] [Related]
12. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection. Deblanc C; Delgado-Ortega M; Gorin S; Berri M; Paboeuf F; Berthon P; Herrler G; Meurens F; Simon G J Gen Virol; 2016 Oct; 97(10):2501-2515. PubMed ID: 27498789 [TBL] [Abstract][Full Text] [Related]
13. Seroprevalence of H1N1, H3N2 and H1N2 influenza viruses in pigs in seven European countries in 2002-2003. Van Reeth K; Brown IH; Dürrwald R; Foni E; Labarque G; Lenihan P; Maldonado J; Markowska-Daniel I; Pensaert M; Pospisil Z; Koch G Influenza Other Respir Viruses; 2008 May; 2(3):99-105. PubMed ID: 19453469 [TBL] [Abstract][Full Text] [Related]
14. Swine Influenza Virus and Association with the Porcine Respiratory Disease Complex in Pig Farms in Southern Brazil. Schmidt C; Cibulski SP; Andrade CP; Teixeira TF; Varela AP; Scheffer CM; Franco AC; de Almeida LL; Roehe PM Zoonoses Public Health; 2016 May; 63(3):234-40. PubMed ID: 26302164 [TBL] [Abstract][Full Text] [Related]
16. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. Dlugolenski D; Jones L; Howerth E; Wentworth D; Tompkins SM; Tripp RA J Virol; 2015 May; 89(10):5651-67. PubMed ID: 25762737 [TBL] [Abstract][Full Text] [Related]
17. Association of swine influenza H1N1 pandemic virus (SIV-H1N1p) with porcine respiratory disease complex in sows from commercial pig farms in Colombia. Jiménez LF; Ramírez Nieto G; Alfonso VV; Correa JJ Virol Sin; 2014 Aug; 29(4):242-9. PubMed ID: 25160760 [TBL] [Abstract][Full Text] [Related]
18. Infectious agents associated with respiratory diseases in 125 farrow-to-finish pig herds: a cross-sectional study. Fablet C; Marois-Créhan C; Simon G; Grasland B; Jestin A; Kobisch M; Madec F; Rose N Vet Microbiol; 2012 May; 157(1-2):152-63. PubMed ID: 22226820 [TBL] [Abstract][Full Text] [Related]
19. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Vincent AL; Ma W; Lager KM; Gramer MR; Richt JA; Janke BH Virus Genes; 2009 Oct; 39(2):176-85. PubMed ID: 19597980 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of the zoonotic potential of a novel reassortant H1N2 swine influenza virus with gene constellation derived from multiple viral sources. Lee JH; Pascua PN; Decano AG; Kim SM; Park SJ; Kwon HI; Kim EH; Kim YI; Kim H; Kim SY; Song MS; Jang HK; Park BK; Choi YK Infect Genet Evol; 2015 Aug; 34():378-93. PubMed ID: 26051886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]