These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 22261472)
1. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part I: experimental results. Jüschke M; Koch C Ultrason Sonochem; 2012 Jul; 19(4):787-95. PubMed ID: 22261472 [TBL] [Abstract][Full Text] [Related]
2. Model processes and cavitation indicators for a quantitative description of an ultrasonic cleaning vessel: Part II--multivariate data analysis. Koch C; Jüschke M Ultrason Sonochem; 2012 Jul; 19(4):796-802. PubMed ID: 22265604 [TBL] [Abstract][Full Text] [Related]
3. Studies of a novel sensor for assessing the spatial distribution of cavitation activity within ultrasonic cleaning vessels. Zeqiri B; Hodnett M; Carroll AJ Ultrasonics; 2006 Jan; 44(1):73-82. PubMed ID: 16213538 [TBL] [Abstract][Full Text] [Related]
4. Investigation of spatial distribution of sound field parameters in ultrasound cleaning baths under the influence of cavitation. Jenderka KV; Koch C Ultrasonics; 2006 Dec; 44 Suppl 1():e401-6. PubMed ID: 16781752 [TBL] [Abstract][Full Text] [Related]
5. Ultrasound field distribution and ultrasonic oxidation desulfurization efficiency. Liu L; Wen J; Yang Y; Tan W Ultrason Sonochem; 2013 Mar; 20(2):696-702. PubMed ID: 23168078 [TBL] [Abstract][Full Text] [Related]
6. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
7. An erosion sensor based on a quartz crystal microbalance for quantitative determination of the cleaning efficiency in an ultrasonic vessel. Jüschke M; Koch C; Dreyer T Ultrason Sonochem; 2014 Sep; 21(5):1900-6. PubMed ID: 24838113 [TBL] [Abstract][Full Text] [Related]
8. Determination of the receiving range of sound field measurements in cavitating media. Koch C; Jenderka KV Ultrason Sonochem; 2008 Jul; 15(5):846-52. PubMed ID: 18065253 [TBL] [Abstract][Full Text] [Related]
9. The influence of air content in water on ultrasonic cavitation field. Liu L; Yang Y; Liu P; Tan W Ultrason Sonochem; 2014 Mar; 21(2):566-71. PubMed ID: 24230967 [TBL] [Abstract][Full Text] [Related]
10. Observations of water cavitation intensity under practical ultrasonic cleaning conditions. Niemczewski B Ultrason Sonochem; 2007 Jan; 14(1):13-8. PubMed ID: 16455284 [TBL] [Abstract][Full Text] [Related]
11. Time-resolved monitoring of cavitation activity in megasonic cleaning systems. Hauptmann M; Brems S; Struyf H; Mertens P; Heyns M; De Gendt S; Glorieux C Rev Sci Instrum; 2012 Mar; 83(3):034904. PubMed ID: 22462949 [TBL] [Abstract][Full Text] [Related]
12. Measurement of sound field in cavitating media by an optical fibre-tip hydrophone. Koch C; Jenderka KV Ultrason Sonochem; 2008 Apr; 15(4):502-509. PubMed ID: 17644460 [TBL] [Abstract][Full Text] [Related]
13. Simulation and measurement of nonlinear behavior in a high-power test cell. Harvey G; Gachagan A IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):808-19. PubMed ID: 21507758 [TBL] [Abstract][Full Text] [Related]
14. Influence of experimental parameters on sonochemistry dosimetries: KI oxidation, Fricke reaction and H2O2 production. Merouani S; Hamdaoui O; Saoudi F; Chiha M J Hazard Mater; 2010 Jun; 178(1-3):1007-14. PubMed ID: 20211524 [TBL] [Abstract][Full Text] [Related]
15. Dependence of cavitation, chemical effect, and mechanical effect thresholds on ultrasonic frequency. Thanh Nguyen T; Asakura Y; Koda S; Yasuda K Ultrason Sonochem; 2017 Nov; 39():301-306. PubMed ID: 28732949 [TBL] [Abstract][Full Text] [Related]
16. Energetic balance in an ultrasonic reactor using focused or flat high frequency transducers. Hallez L; Touyeras F; Hihn JY; Klima J Ultrason Sonochem; 2007 Sep; 14(6):739-49. PubMed ID: 17347018 [TBL] [Abstract][Full Text] [Related]
17. Influence of concentration of substances used in ultrasonic cleaning in alkaline solutions on cavitation intensity. Niemczewski B Ultrason Sonochem; 2009 Mar; 16(3):402-7. PubMed ID: 18977163 [TBL] [Abstract][Full Text] [Related]
18. [Measurement of coronary flow reserve by pressure/temperature sensor guide wire-based thermodilution in experimental models]. Neishi Y; Akasaka T; Koyama Y; Akiyama M; Watanabe N; Kamiyama N; Kaji S; Saito Y; Suetsuna R; Yoshida K J Cardiol; 2002 Dec; 40(6):249-57. PubMed ID: 12528646 [TBL] [Abstract][Full Text] [Related]
19. Experimental quantification of cavitation yield revisited: focus on high frequency ultrasound reactors. Kirpalani DM; McQuinn KJ Ultrason Sonochem; 2006 Jan; 13(1):1-5. PubMed ID: 16223678 [TBL] [Abstract][Full Text] [Related]