These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 22261861)
1. Significance of Tyr302, His235 and Asp194 in the α-amylase from Bacillus licheniformis. Qin Y; Fang Z; Pan F; Zhao Y; Li H; Wu H; Meng X Biotechnol Lett; 2012 May; 34(5):895-9. PubMed ID: 22261861 [TBL] [Abstract][Full Text] [Related]
2. Site-directed mutagenesis of the calcium-binding site of alpha-amylase of Bacillus licheniformis. Priyadharshini R; Gunasekaran P Biotechnol Lett; 2007 Oct; 29(10):1493-9. PubMed ID: 17598074 [TBL] [Abstract][Full Text] [Related]
3. Repeated Random Mutagenesis of alpha-Amylase from Bacillus licheniformis for Improved pH Performance. Priyadharshini R; Manoharan S; Hemalatha D; Gunasekaran P J Microbiol Biotechnol; 2010 Dec; 20(12):1696-701. PubMed ID: 21193826 [TBL] [Abstract][Full Text] [Related]
4. Thermostabilization by proline substitution in an alkaline, liquefying alpha-amylase from Bacillus sp. strain KSM-1378. Igarashi K; Ozawa T; Ikawakitayama K; Hayashi Y; Araki H; Endo K; Hagihara H; Ozaki K; Kawai S; Ito S Biosci Biotechnol Biochem; 1999 Sep; 63(9):1535-40. PubMed ID: 10540739 [TBL] [Abstract][Full Text] [Related]
5. Improvement of thermal stability of a mutagenised α-amylase by manipulation of the calcium-binding site. Ghollasi M; Ghanbari-Safari M; Khajeh K Enzyme Microb Technol; 2013 Dec; 53(6-7):406-13. PubMed ID: 24315644 [TBL] [Abstract][Full Text] [Related]
6. Probing the role of asparagine mutation in thermostability of Bacillus KR-8104 α-amylase. Rahimzadeh M; Khajeh K; Mirshahi M; Khayatian M; Schwarzenbacher R Int J Biol Macromol; 2012 May; 50(4):1175-82. PubMed ID: 22126991 [TBL] [Abstract][Full Text] [Related]
7. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. Declerck N; Machius M; Wiegand G; Huber R; Gaillardin C J Mol Biol; 2000 Aug; 301(4):1041-57. PubMed ID: 10966804 [TBL] [Abstract][Full Text] [Related]
8. Improved thermostability of a Bacillus alpha-amylase by deletion of an arginine-glycine residue is caused by enhanced calcium binding. Igarashi K; Hatada Y; Ikawa K; Araki H; Ozawa T; Kobayashi T; Ozaki K; Ito S Biochem Biophys Res Commun; 1998 Jul; 248(2):372-7. PubMed ID: 9675143 [TBL] [Abstract][Full Text] [Related]
9. A novel alpha-amylase from Bacillus mojavensis A21: purification and biochemical characterization. Hmidet N; Maalej H; Haddar A; Nasri M Appl Biochem Biotechnol; 2010 Oct; 162(4):1018-30. PubMed ID: 20108054 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of mutagenised acid-resistant alpha-amylase expressed in Bacillus subtilis WB600. Liu YH; Lu FP; Li Y; Yin XB; Wang Y; Gao C Appl Microbiol Biotechnol; 2008 Feb; 78(1):85-94. PubMed ID: 18157528 [TBL] [Abstract][Full Text] [Related]
11. Role of the salt bridge between Arg176 and Glu126 in the thermal stability of the Bacillus amyloliquefaciens α-amylase (BAA). Zonouzi R; Khajeh K; Monajjemi M; Ghaemi N J Microbiol Biotechnol; 2013 Jan; 23(1):7-14. PubMed ID: 23314361 [TBL] [Abstract][Full Text] [Related]
12. Role of the calcium-binding residues Asp231, Asp233, and Asp438 in alpha-amylase of Bacillus amyloliquefaciens as revealed by mutational analysis. Liu Y; Shen W; Shi GY; Wang ZX Curr Microbiol; 2010 Mar; 60(3):162-6. PubMed ID: 19841977 [TBL] [Abstract][Full Text] [Related]
13. Role of Val289 residue in the alpha-amylase of Bacillus amyloliquefaciens MTCC 610: an analysis by site directed mutagenesis. Priyadharshini R; Hemalatha D; Gunasekaran P J Microbiol Biotechnol; 2010 Mar; 20(3):563-8. PubMed ID: 20372028 [TBL] [Abstract][Full Text] [Related]
14. Protein engineering of alpha-amylase for low pH performance. Shaw A; Bott R; Day AG Curr Opin Biotechnol; 1999 Aug; 10(4):349-52. PubMed ID: 10449318 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of an alkaline phytase: influencing specificity, activity and stability in acidic milieu. Tran TT; Mamo G; Búxo L; Le NN; Gaber Y; Mattiasson B; Hatti-Kaul R Enzyme Microb Technol; 2011 Jul; 49(2):177-82. PubMed ID: 22112406 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of a bacterial alpha-amylase: toward enhanced pH-performance and higher specific activity. Bessler C; Schmitt J; Maurer KH; Schmid RD Protein Sci; 2003 Oct; 12(10):2141-9. PubMed ID: 14500872 [TBL] [Abstract][Full Text] [Related]
17. Critical factors to high thermostability of an alpha-amylase from hyperthermophilic archaeon Thermococcus onnurineus NA1. Lim JK; Lee HS; Kim YJ; Bae SS; Jeon JH; Kang SG; Lee JH J Microbiol Biotechnol; 2007 Aug; 17(8):1242-8. PubMed ID: 18051591 [TBL] [Abstract][Full Text] [Related]
18. Evidence regarding the hypothesis that the histidine-histidine contact pairs may affect protein stability. Haghani K; Khajeh K; Naderi-Manesh H; Ranjbar B Int J Biol Macromol; 2012 May; 50(4):1040-7. PubMed ID: 22257446 [TBL] [Abstract][Full Text] [Related]
19. Engineering of a Bacillus alpha-amylase with improved thermostability and calcium independency. Ghollasi M; Khajeh K; Naderi-Manesh H; Ghasemi A Appl Biochem Biotechnol; 2010 Sep; 162(2):444-59. PubMed ID: 20177823 [TBL] [Abstract][Full Text] [Related]
20. Structure-based replacement of methionine residues at the catalytic domains with serine significantly improves the oxidative stability of alkaline amylase from alkaliphilic Alkalimonas amylolytica. Yang H; Liu L; Li J; Du G; Chen J Biotechnol Prog; 2012; 28(5):1271-7. PubMed ID: 22887900 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]