These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 22261862)

  • 1. Bioconversion of ethyl (R)-4-cyano-3-hydroxybutyate into (R)-ethyl-3-hydroxyglutarate via an indirect pathway by Rhodococcus boritolerans.
    Yang MJ; Wang XJ; Yang ZY; An J; Xiang WS; Zhang J
    Biotechnol Lett; 2012 May; 34(5):901-5. PubMed ID: 22261862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel biosynthesis of (R)-ethyl-3-hydroxyglutarate with (R)-enantioselective hydrolysis of racemic ethyl 4-cyano-3-hydroxybutyate by Rhodococcus erythropolis.
    Dong HP; Liu ZQ; Zheng YG; Shen YC
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1335-45. PubMed ID: 20393698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34.
    Raj J; Seth A; Prasad S; Bhalla TC
    Appl Microbiol Biotechnol; 2007 Mar; 74(3):535-9. PubMed ID: 17216468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of α-ketoisocaproate via free-whole-cell biotransformation by Rhodococcus opacus DSM 43250 with L-leucine as the substrate.
    Zhu Y; Li J; Liu L; Du G; Chen J
    Enzyme Microb Technol; 2011 Sep; 49(4):321-5. PubMed ID: 22112557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening, cultivation, and biocatalytic performance of Rhodococcus boritolerans FW815 with strong 2,2-dimethylcyclopropanecarbonitrile hydratase activity.
    Wang YJ; Liu ZQ; Zheng RC; Xue YP; Zheng YG
    J Ind Microbiol Biotechnol; 2012 Mar; 39(3):409-17. PubMed ID: 21892773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of 2-chlorotoluene by Rhodococcus sp. OCT 10.
    Dobslaw D; Engesser KH
    Appl Microbiol Biotechnol; 2012 Mar; 93(5):2205-14. PubMed ID: 21870046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of glutaconic acid in a recombinant Escherichia coli strain.
    Djurdjevic I; Zelder O; Buckel W
    Appl Environ Microbiol; 2011 Jan; 77(1):320-2. PubMed ID: 21037290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Cloning, expression and characterization of chiral alcohol dehydrogenase from Rhodococcus erythropolis ATCC 4277].
    Zhu Q; Jia H; Li Y; Jia L; Ma Y; Wei P
    Wei Sheng Wu Xue Bao; 2012 Jan; 52(1):83-9. PubMed ID: 22489464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biotransformation of 1,3-propanediol cyclic sulfate and its derivatives to diols by Rhodococcus sp.
    He YC; Tao ZC; Zhang DP; Yang ZX; Gao S; Ma CL
    Biotechnol Lett; 2015 Jan; 37(1):183-8. PubMed ID: 25214230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies.
    Aggarwal S; Karimi IA; Lee DY
    Mol Biosyst; 2011 Nov; 7(11):3122-31. PubMed ID: 21912787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens.
    Kim BN; Yeom SJ; Oh DK
    Biotechnol Lett; 2011 May; 33(5):993-7. PubMed ID: 21207107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of surfactants in optimizing fluorene assimilation and intermediate formation by Rhodococcus rhodochrous VKM B-2469.
    Kolomytseva MP; Randazzo D; Baskunov BP; Scozzafava A; Briganti F; Golovleva LA
    Bioresour Technol; 2009 Jan; 100(2):839-44. PubMed ID: 18723343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of (R)-3-hydroxybutyric acid by fermentation and bioconversion processes with Azohydromonas lata.
    Ugwu CU; Tokiwa Y; Ichiba T
    Bioresour Technol; 2011 Jun; 102(12):6766-8. PubMed ID: 21507620
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of citric acid on synthesis of surfactants in Rhodococcus erythropolis IMV Ac-5017].
    Pyroh TP; Shevchuk TA; Shuliakova MO; Tarasenko DO
    Mikrobiol Z; 2011; 73(5):21-7. PubMed ID: 22164696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous production of L(+)-tartaric acid from cis-epoxysuccinate using a membrane recycle reactor.
    Willaert R; De Vuyst L
    Appl Microbiol Biotechnol; 2006 Jun; 71(2):155-63. PubMed ID: 16217652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Transformation of delta4-3-ketosteroids by free and immobilized cells of Rhodococcus erythropolis actinobacterium].
    Karpova NV; Andriushina VA; Iaderets VV; Druzhinina AV; Stytsenko TS; Shaskol'skiĭ BL; Lozinskiĭ VI; Khi LD; Voĭshvillo NE
    Prikl Biokhim Mikrobiol; 2011; 47(4):429-35. PubMed ID: 21950117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of a pharmaceutical intermediate via biohydroxylation using whole cells of Rhodococcus rubropertinctus N82.
    Kimura T; Ishikawa C; Osorio-Lozada A; Robins KT; Hibi M; Ogawa J
    Biosci Biotechnol Biochem; 2014; 78(10):1772-6. PubMed ID: 25273144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of isopropyl cis-6-hexadecenoate by regiospecific desaturation of isopropyl palmitate by a double mutant of a Rhodococcus strain.
    Koike K; Takaiwa M; Ara K; Inoue S; Kimura Y; Ito S
    Biosci Biotechnol Biochem; 2000 Feb; 64(2):399-404. PubMed ID: 10737199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol.
    Plaggenborg R; Overhage J; Loos A; Archer JA; Lessard P; Sinskey AJ; Steinbüchel A; Priefert H
    Appl Microbiol Biotechnol; 2006 Oct; 72(4):745-55. PubMed ID: 16421716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574.
    Mutalik SR; Vaidya BK; Joshi RM; Desai KM; Nene SN
    Bioresour Technol; 2008 Nov; 99(16):7875-80. PubMed ID: 18511269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.