These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 22261973)
1. Core-shell structured photovoltaic devices based on PbS quantum dots and silicon nanopillar arrays. Song T; Zhang F; Lei X; Xu Y; Lee S; Sun B Nanoscale; 2012 Feb; 4(4):1336-43. PubMed ID: 22261973 [TBL] [Abstract][Full Text] [Related]
2. Design and development of novel linker for PbS quantum dots/TiO₂ mesoscopic solar cell. Etgar L; Park J; Barolo C; Nazeeruddin MK; Viscardi G; Graetzel M ACS Appl Mater Interfaces; 2011 Sep; 3(9):3264-7. PubMed ID: 21815679 [TBL] [Abstract][Full Text] [Related]
3. Core-shell heterojunction of silicon nanowire arrays and carbon quantum dots for photovoltaic devices and self-driven photodetectors. Xie C; Nie B; Zeng L; Liang FX; Wang MZ; Luo L; Feng M; Yu Y; Wu CY; Wu Y; Yu SH ACS Nano; 2014 Apr; 8(4):4015-22. PubMed ID: 24665986 [TBL] [Abstract][Full Text] [Related]
4. Hybrid heterojunction solar cell based on organic-inorganic silicon nanowire array architecture. Shen X; Sun B; Liu D; Lee ST J Am Chem Soc; 2011 Dec; 133(48):19408-15. PubMed ID: 22035274 [TBL] [Abstract][Full Text] [Related]
5. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. Zhu H; Song N; Lian T J Am Chem Soc; 2010 Oct; 132(42):15038-45. PubMed ID: 20925344 [TBL] [Abstract][Full Text] [Related]
6. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots. Zhu H; Song N; Lian T J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569 [TBL] [Abstract][Full Text] [Related]
7. Towards high efficiency air-processed near-infrared responsive photovoltaics: bulk heterojunction solar cells based on PbS/CdS core-shell quantum dots and TiO2 nanorod arrays. Gonfa BA; Kim MR; Delegan N; Tavares AC; Izquierdo R; Wu N; El Khakani MA; Ma D Nanoscale; 2015 Jun; 7(22):10039-49. PubMed ID: 25975363 [TBL] [Abstract][Full Text] [Related]
8. Photovoltaic effects of CdS and PbS quantum dots encapsulated in zeolite Y. Kim HS; Jeong NC; Yoon KB Langmuir; 2011 Dec; 27(23):14678-88. PubMed ID: 21992820 [TBL] [Abstract][Full Text] [Related]
9. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Gopal A; Hoshino K; Kim S; Zhang X Nanotechnology; 2009 Jun; 20(23):235201. PubMed ID: 19448295 [TBL] [Abstract][Full Text] [Related]
19. Cu nanoparticles enable plasmonic-improved silicon photovoltaic devices. de Souza ML; Corio P; Brolo AG Phys Chem Chem Phys; 2012 Dec; 14(45):15722-8. PubMed ID: 23090151 [TBL] [Abstract][Full Text] [Related]
20. High performance PbS quantum dot sensitized solar cells via electric field assisted in situ chemical deposition on modulated TiO2 nanotube arrays. Tao L; Xiong Y; Liu H; Shen W Nanoscale; 2014 Jan; 6(2):931-8. PubMed ID: 24281658 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]