BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22262053)

  • 61. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices.
    Gómez-de Pedro S; Puyol M; Alonso-Chamarro J
    Nanotechnology; 2010 Oct; 21(41):415603. PubMed ID: 20844325
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots.
    Zhu H; Prakash A; Benoit DN; Jones CJ; Colvin VL
    Nanotechnology; 2010 Jun; 21(25):255604. PubMed ID: 20516578
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Efficient color-tunable multiexcitonic dual wavelength emission from Type II semiconductor tetrapods.
    Wu WY; Li M; Lian J; Wu X; Yeow EK; Jhon MH; Chan Y
    ACS Nano; 2014 Sep; 8(9):9349-57. PubMed ID: 25153534
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.
    Li S; Steigerwald ML; Brus LE
    ACS Nano; 2009 May; 3(5):1267-73. PubMed ID: 19374391
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Synthesis, structural, and optical properties of stable ZnS:Cu,Cl nanocrystals.
    Corrado C; Jiang Y; Oba F; Kozina M; Bridges F; Zhang JZ
    J Phys Chem A; 2009 Apr; 113(16):3830-9. PubMed ID: 19170574
    [TBL] [Abstract][Full Text] [Related]  

  • 66. One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase.
    Gu Z; Zou L; Fang Z; Zhu W; Zhong X
    Nanotechnology; 2008 Apr; 19(13):135604. PubMed ID: 19636153
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.
    Lignos I; Maceiczyk R; deMello AJ
    Acc Chem Res; 2017 May; 50(5):1248-1257. PubMed ID: 28467055
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Crystal and electrochemical properties of water dispersed CdS nanocrystals obtained via reverse micelles and arrested precipitation.
    Merkoçi A; Marín S; Castañeda MT; Pumera M; Ros J; Alegret S
    Nanotechnology; 2006 May; 17(10):2553-9. PubMed ID: 21727504
    [TBL] [Abstract][Full Text] [Related]  

  • 69. New synthesis of two-dimensional CdSe/CdS core@shell dot-in-hexagonal platelet nanoheterostructures with interesting optical properties.
    Chauhan H; Kumar Y; Deka S
    Nanoscale; 2014 Sep; 6(17):10347-54. PubMed ID: 25074262
    [TBL] [Abstract][Full Text] [Related]  

  • 70. The use of a microreactor for rapid screening of the reaction conditions and investigation of the photoluminescence mechanism of carbon dots.
    Lu Y; Zhang L; Lin H
    Chemistry; 2014 Apr; 20(15):4246-50. PubMed ID: 24623603
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Multistage Microfluidic Platform for the Continuous Synthesis of III-V Core/Shell Quantum Dots.
    Baek J; Shen Y; Lignos I; Bawendi MG; Jensen KF
    Angew Chem Int Ed Engl; 2018 Aug; 57(34):10915-10918. PubMed ID: 29944772
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Electronic absorption spectroscopy of cobalt ions in diluted magnetic semiconductor quantum dots: demonstration of an isocrystalline core/shell synthetic method.
    Radovanovic PV; Gamelin DR
    J Am Chem Soc; 2001 Dec; 123(49):12207-14. PubMed ID: 11734020
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multiplexed bio-imaging using cadmium telluride quantum dots synthesized by mathematically derived process parameters in a continuous flow active microreactor.
    Pandey S; Mukherjee D; Kshirsagar P; Patra C; Bodas D
    Mater Today Bio; 2021 Jun; 11():100123. PubMed ID: 34458715
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Influence of chloride ions on the synthesis of colloidal branched CdSe/CdS nanocrystals by seeded growth.
    Kim MR; Miszta K; Povia M; Brescia R; Christodoulou S; Prato M; Marras S; Manna L
    ACS Nano; 2012 Dec; 6(12):11088-96. PubMed ID: 23176381
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Roles of CdS quantum dots in 1,1'-oxalyldiimidazole chemiluminescence.
    Cho H; Lee S; Lee JH
    Analyst; 2012 Nov; 137(22):5368-73. PubMed ID: 23034656
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Facile Synthesis of Monodisperse CdS Nanocrystals via Microreaction.
    Wan Z; Yang H; Luan W; Tu ST; Zhou X
    Nanoscale Res Lett; 2009 Oct; 5(1):130-137. PubMed ID: 20651917
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Procedures for controlling the size, structure and optical properties of CdS quantum dots during synthesis in aqueous solution.
    Almendral-Parra MJ; Alonso-Mateos Á; Sánchez-Paradinas S; Boyero-Benito JF; Rodríguez-Fernández E; Criado-Talavera JJ
    J Fluoresc; 2012 Jan; 22(1):59-69. PubMed ID: 21826426
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Precise regulation of the multicolor spectrum of carbon dots based on the bionic leaf vein ultrasonic microreactor.
    Rao L; Sun B; Liu Y; Zhang Q; Zhong G; Wen M; Zhang J; Fu T; Niu X
    Ultrason Sonochem; 2023 Dec; 101():106674. PubMed ID: 37924614
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generic and Scalable Method for the Preparation of Monodispersed Metal Sulfide Nanocrystals with Tunable Optical Properties.
    Bera A; Mandal D; Goswami PN; Rath AK; Prasad BLV
    Langmuir; 2018 May; 34(20):5788-5797. PubMed ID: 29715041
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Synthesis of trap emission free cadmium sulfide quantum dots: Role of phosphonic acids and halide ions.
    Arora V; Soni U; Mittal M; Yadav S; Sapra S
    J Colloid Interface Sci; 2017 Apr; 491():329-335. PubMed ID: 28056442
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.