BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22263607)

  • 1. Quantitative study of the dynamic tumor-endothelial cell interactions through an integrated microfluidic coculture system.
    Zheng C; Zhao L; Chen G; Zhou Y; Pang Y; Huang Y
    Anal Chem; 2012 Feb; 84(4):2088-93. PubMed ID: 22263607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Directing the flow of medium in controlled cocultures of HeLa cells and human umbilical vein endothelial cells with a microfluidic device.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2010 Sep; 10(18):2374-9. PubMed ID: 20563348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live cell imaging analysis of the epigenetic regulation of the human endothelial cell migration at single-cell resolution.
    Zheng C; Yu Z; Zhou Y; Tao L; Pang Y; Chen T; Zhang X; Qiu H; Zhou H; Chen Z; Huang Y
    Lab Chip; 2012 Sep; 12(17):3063-72. PubMed ID: 22688181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled cocultures of HeLa cells and human umbilical vein endothelial cells on detachable substrates.
    Kaji H; Yokoi T; Kawashima T; Nishizawa M
    Lab Chip; 2009 Feb; 9(3):427-32. PubMed ID: 19156292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrofluidic pressure sensor embedded microfluidic device: a study of endothelial cells under hydrostatic pressure and shear stress combinations.
    Liu MC; Shih HC; Wu JG; Weng TW; Wu CY; Lu JC; Tung YC
    Lab Chip; 2013 May; 13(9):1743-53. PubMed ID: 23475014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.
    Cui P; Yu M; Peng X; Dong L; Yang Z
    J Pineal Res; 2012 Mar; 52(2):236-43. PubMed ID: 21913973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the interaction between fibroblasts and tumor cells on a microfluidic co-culture device.
    Ma H; Liu T; Qin J; Lin B
    Electrophoresis; 2010 May; 31(10):1599-605. PubMed ID: 20414883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MCF7-MSC co-culture assay: approach to assess the co-operation between MCF-7s and MSCs in tumor-induced angiogenesis.
    Comşa S; Ciuculescu F; Henschler R; Raica M
    Rom J Morphol Embryol; 2011; 52(3 Suppl):1071-6. PubMed ID: 22119827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating in vitro cell-cell interaction using a microfluidic coculture system.
    Wei CW; Cheng JY; Young TH
    Biomed Microdevices; 2006 Mar; 8(1):65-71. PubMed ID: 16491333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A palmtop-sized microfluidic cell culture system driven by a miniaturized infusion pump.
    Sasaki N; Shinjo M; Hirakawa S; Nishinaka M; Tanaka Y; Mawatari K; Kitamori T; Sato K
    Electrophoresis; 2012 Jul; 33(12):1729-35. PubMed ID: 22740461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-cell level co-culture platform for intercellular communication.
    Hong S; Pan Q; Lee LP
    Integr Biol (Camb); 2012 Apr; 4(4):374-80. PubMed ID: 22434268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bladder cancer microenvironment simulation system based on a microfluidic co-culture model.
    Liu PF; Cao YW; Zhang SD; Zhao Y; Liu XG; Shi HQ; Hu KY; Zhu GQ; Ma B; Niu HT
    Oncotarget; 2015 Nov; 6(35):37695-705. PubMed ID: 26462177
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell migration into scaffolds under co-culture conditions in a microfluidic platform.
    Chung S; Sudo R; Mack PJ; Wan CR; Vickerman V; Kamm RD
    Lab Chip; 2009 Jan; 9(2):269-75. PubMed ID: 19107284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Microfluidic Platform with Multiple Functions To Probe Tumor-Endothelial Cell Interaction.
    Lin L; Lin X; Lin L; Feng Q; Kitamori T; Lin JM; Sun J
    Anal Chem; 2017 Sep; 89(18):10037-10044. PubMed ID: 28820578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross talk between cancer and immune cells: exploring complex dynamics in a microfluidic environment.
    Businaro L; De Ninno A; Schiavoni G; Lucarini V; Ciasca G; Gerardino A; Belardelli F; Gabriele L; Mattei F
    Lab Chip; 2013 Jan; 13(2):229-39. PubMed ID: 23108434
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of vascular endothelial growth factor in the communication between human osteoprogenitors and endothelial cells.
    Grellier M; Ferreira-Tojais N; Bourget C; Bareille R; Guillemot F; Amédée J
    J Cell Biochem; 2009 Feb; 106(3):390-8. PubMed ID: 19127540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular compartmentalized microfluidic platform: Study of axon-glia interactions.
    Hosmane S; Yang IH; Ruffin A; Thakor N; Venkatesan A
    Lab Chip; 2010 Mar; 10(6):741-7. PubMed ID: 20221562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of reactive oxygen species (ROS), metalloproteinase-2 (MMP-2) and interleukin-6 (IL-6) in direct interactions between tumour cell spheroids and endothelial cell monolayer.
    Paduch R; Walter-Croneck A; Zdzisińska B; Szuster-Ciesielska A; Kandefer-Szerszeń M
    Cell Biol Int; 2005 Jul; 29(7):497-505. PubMed ID: 15893483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.