BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 22263638)

  • 1. Temperature-triggered self-assembly of elastin-like block co-recombinamers:the controlled formation of micelles and vesicles in an aqueous medium.
    Martín L; Castro E; Ribeiro A; Alonso M; Rodríguez-Cabello JC
    Biomacromolecules; 2012 Feb; 13(2):293-8. PubMed ID: 22263638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A valid way of quasi-quantificationally controlling the self-assembly of block copolymers in confined space.
    Li Y; Ma R; Zhao L; Tao Q; Xiong D; An Y; Shi L
    Langmuir; 2009 Mar; 25(5):2757-64. PubMed ID: 19239189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH-controlled, polymer-mediated assembly of polymer micelle nanoparticles.
    Lee SC; Lee HJ
    Langmuir; 2007 Jan; 23(2):488-95. PubMed ID: 17209598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-assembled elastin-like polypeptide particles.
    Osborne JL; Farmer R; Woodhouse KA
    Acta Biomater; 2008 Jan; 4(1):49-57. PubMed ID: 17881311
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular implications in the nanoencapsulation of the anti-tuberculosis drug rifampicin within flower-like polymeric micelles.
    Moretton MA; Glisoni RJ; Chiappetta DA; Sosnik A
    Colloids Surf B Biointerfaces; 2010 Sep; 79(2):467-79. PubMed ID: 20627665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery carriers.
    Kim SH; Tan JP; Fukushima K; Nederberg F; Yang YY; Waymouth RM; Hedrick JL
    Biomaterials; 2011 Aug; 32(23):5505-14. PubMed ID: 21529935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of surfactants on the self-assembly of a model elastin-like block corecombinamer: from micelles to an aqueous two-phase system.
    Pinedo-Martín G; Castro E; Martín L; Alonso M; Rodríguez-Cabello JC
    Langmuir; 2014 Apr; 30(12):3432-40. PubMed ID: 24611880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emerging applications of multifunctional elastin-like recombinamers.
    Rodríguez-Cabello JC; Martín L; Girotti A; García-Arévalo C; Arias FJ; Alonso M
    Nanomedicine (Lond); 2011 Jan; 6(1):111-22. PubMed ID: 21182423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of hollow CaCO3 nanospheres templated by micelles of poly(styrene-b-acrylic acid-b-ethylene glycol) in aqueous solutions.
    Bastakoti BP; Guragain S; Yokoyama Y; Yusa S; Nakashima K
    Langmuir; 2011 Jan; 27(1):379-84. PubMed ID: 21117696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size and shape characterization of thermoreversible micelles of three-armed star elastin-like polypeptides.
    Ghoorchian A; Vandemark K; Freeman K; Kambow S; Holland NB; Streletzky KA
    J Phys Chem B; 2013 Jul; 117(29):8865-74. PubMed ID: 23777417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate]-b-poly(glutamic acid) double hydrophilic block copolymers.
    Agut W; Brûlet A; Schatz C; Taton D; Lecommandoux S
    Langmuir; 2010 Jul; 26(13):10546-54. PubMed ID: 20491497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release.
    Herrero-Vanrell R; Rincón AC; Alonso M; Reboto V; Molina-Martinez IT; Rodríguez-Cabello JC
    J Control Release; 2005 Jan; 102(1):113-22. PubMed ID: 15653138
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer.
    Lin J; Zhang S; Chen T; Lin S; Jin H
    Int J Pharm; 2007 May; 336(1):49-57. PubMed ID: 17134858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly ordered nanostructured surfaces obtained with silica-filled diblock-copolymer micelles as templates.
    Frömsdorf A; Kornowski A; Pütter S; Stillrich H; Lee LT
    Small; 2007 May; 3(5):880-9. PubMed ID: 17410621
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and self-assembly of a leucine-enkephalin analogue in different nanostructures: application of nanovesicles.
    Koley P; Gayen A; Drew MG; Mukhopadhyay C; Pramanik A
    Small; 2012 Apr; 8(7):984-90. PubMed ID: 22323423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanopore extrusion-induced transition from spherical to cylindrical block copolymer micelles.
    Chen Q; Zhao H; Ming T; Wang J; Wu C
    J Am Chem Soc; 2009 Nov; 131(46):16650-1. PubMed ID: 19877620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-organization behavior of methacrylate-based amphiphilic di- and triblock copolymers.
    Rakhmatullina E; Braun T; Chami M; Malinova V; Meier W
    Langmuir; 2007 Nov; 23(24):12371-9. PubMed ID: 17949024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotinylated thermoresponsive micelle self-assembled from double-hydrophilic block copolymer for drug delivery and tumor target.
    Cheng C; Wei H; Shi BX; Cheng H; Li C; Gu ZW; Cheng SX; Zhang XZ; Zhuo RX
    Biomaterials; 2008 Feb; 29(4):497-505. PubMed ID: 17959241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH on complex coacervate core micelles from Fe(III)-based coordination polymer.
    Wang J; de Keizer A; van Leeuwen HP; Yan Y; Vergeldt F; van As H; Bomans PH; Sommerdijk NA; Cohen Stuart MA; van der Gucht J
    Langmuir; 2011 Dec; 27(24):14776-82. PubMed ID: 22035496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of self-assembled nanoparticles formed by poly(ethylene oxide)-block-poly(epsilon-caprolactone) copolymers with long poly(epsilon-caprolactone) blocks in aqueous solutions.
    Sachl R; Uchman M; Matĕjícek P; Procházka K; Stĕpánek M; Spírková M
    Langmuir; 2007 Mar; 23(6):3395-400. PubMed ID: 17269809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.