BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 22263650)

  • 1. Observing single cell NF-κB dynamics under stimulant concentration gradient.
    Awwad Y; Geng T; Baldwin AS; Lu C
    Anal Chem; 2012 Feb; 84(3):1224-8. PubMed ID: 22263650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of nuclear translocation of nuclear factor-kappaB relA: evidence for complex dynamics at the single-cell level.
    Schooley K; Zhu P; Dower SK; Qwarnström EE
    Biochem J; 2003 Jan; 369(Pt 2):331-9. PubMed ID: 12350227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-throughput and single-cell imaging of NF-kappaB oscillations using monoclonal cell lines.
    Bartfeld S; Hess S; Bauer B; Machuy N; Ogilvie LA; Schuchhardt J; Meyer TF
    BMC Cell Biol; 2010 Mar; 11():21. PubMed ID: 20233427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity.
    Higashitsuji H; Higashitsuji H; Liu Y; Masuda T; Fujita T; Abdel-Aziz HI; Kongkham S; Dawson S; John Mayer R; Itoh Y; Sakurai T; Itoh K; Fujita J
    Biochem Biophys Res Commun; 2007 Nov; 363(3):879-84. PubMed ID: 17904523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of NF kappa B and Ikappa Balpha studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNa by fluorescence resonance energy transfer.
    Schmid JA; Birbach A; Hofer-Warbinek R; Pengg M; Burner U; Furtmüller PG; Binder BR; de Martin R
    J Biol Chem; 2000 Jun; 275(22):17035-42. PubMed ID: 10747893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear translocation kinetics of NF-kappaB in macrophages challenged with pathogens in a microfluidic platform.
    James CD; Moorman MW; Carson BD; Branda CS; Lantz JW; Manginell RP; Martino A; Singh AK
    Biomed Microdevices; 2009 Jun; 11(3):693-700. PubMed ID: 19169824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NIK and IKKbeta interdependence in NF-kappaB signalling--flux analysis of regulation through metabolites.
    Kim HB; Evans I; Smallwood R; Holcombe M; Qwarnstrom EE
    Biosystems; 2010 Feb; 99(2):140-9. PubMed ID: 19909783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GFP-p65 knock-in mice as a tool to study NF-kappaB dynamics in vivo.
    De Lorenzi R; Gareus R; Fengler S; Pasparakis M
    Genesis; 2009 May; 47(5):323-9. PubMed ID: 19263497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methodology to study NF-κB/RelA ubiquitination in vivo.
    Li H; Starokadomskyy P; Burstein E
    Methods Mol Biol; 2015; 1280():371-81. PubMed ID: 25736761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parallel microfluidic flow cytometer for high-content screening.
    McKenna BK; Evans JG; Cheung MC; Ehrlich DJ
    Nat Methods; 2011 May; 8(5):401-3. PubMed ID: 21478861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative analysis of protein translocations by microfluidic total internal reflection fluorescence flow cytometry.
    Wang J; Fei B; Geahlen RL; Lu C
    Lab Chip; 2010 Oct; 10(20):2673-9. PubMed ID: 20820633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo binding of NF-kappaB to the IkappaBbeta promoter is insufficient for transcriptional activation.
    Griffin BD; Moynagh PN
    Biochem J; 2006 Nov; 400(1):115-25. PubMed ID: 16792530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GAL4-NF-kappaB fusion protein augments transgene expression from neuronal promoters in the rat brain.
    Liu BH; Yang Y; Paton JF; Li F; Boulaire J; Kasparov S; Wang S
    Mol Ther; 2006 Dec; 14(6):872-82. PubMed ID: 16904943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single-cell NF-kappaB dynamics reveal digital activation and analogue information processing.
    Tay S; Hughey JJ; Lee TK; Lipniacki T; Quake SR; Covert MW
    Nature; 2010 Jul; 466(7303):267-71. PubMed ID: 20581820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of the Nrf2 response by intrinsic hepatotoxic drugs correlates with suppression of NF-κB activation and sensitizes toward TNFα-induced cytotoxicity.
    Herpers B; Wink S; Fredriksson L; Di Z; Hendriks G; Vrieling H; de Bont H; van de Water B
    Arch Toxicol; 2016 May; 90(5):1163-79. PubMed ID: 26026609
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillations in NF-kappaB signaling control the dynamics of gene expression.
    Nelson DE; Ihekwaba AE; Elliott M; Johnson JR; Gibney CA; Foreman BE; Nelson G; See V; Horton CA; Spiller DG; Edwards SW; McDowell HP; Unitt JF; Sullivan E; Grimley R; Benson N; Broomhead D; Kell DB; White MR
    Science; 2004 Oct; 306(5696):704-8. PubMed ID: 15499023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RelA control of IkappaBalpha phosphorylation: a positive feedback loop for high affinity NF-kappaB complexes.
    Yang L; Ross K; Qwarnstrom EE
    J Biol Chem; 2003 Aug; 278(33):30881-8. PubMed ID: 12663663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia-induced SOCS3 is limiting STAT3 phosphorylation and NF-κB activation in congenital heart disease.
    Gu Q; Kong Y; Yu ZB; Bai L; Xiao YB
    Biochimie; 2011 May; 93(5):909-20. PubMed ID: 21354254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative regulation of NF-kappaB action by Set9-mediated lysine methylation of the RelA subunit.
    Yang XD; Huang B; Li M; Lamb A; Kelleher NL; Chen LF
    EMBO J; 2009 Apr; 28(8):1055-66. PubMed ID: 19262565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The p65/RelA subunit of NF-kappaB suppresses the sustained, antiapoptotic activity of Jun kinase induced by tumor necrosis factor.
    Reuther-Madrid JY; Kashatus D; Chen S; Li X; Westwick J; Davis RJ; Earp HS; Wang CY; Baldwin AS
    Mol Cell Biol; 2002 Dec; 22(23):8175-83. PubMed ID: 12417721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.