BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 22264079)

  • 1. Sequence, structure, and dynamic determinants of Hsp27 (HspB1) equilibrium dissociation are encoded by the N-terminal domain.
    McDonald ET; Bortolus M; Koteiche HA; Mchaourab HS
    Biochemistry; 2012 Feb; 51(6):1257-68. PubMed ID: 22264079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of chaperone function in small heat shock proteins: dissociation of the HSP27 oligomer is required for recognition and binding of destabilized T4 lysozyme.
    Shashidharamurthy R; Koteiche HA; Dong J; McHaourab HS
    J Biol Chem; 2005 Feb; 280(7):5281-9. PubMed ID: 15542604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific sequences in the N-terminal domain of human small heat-shock protein HSPB6 dictate preferential hetero-oligomerization with the orthologue HSPB1.
    Heirbaut M; Lermyte F; Martin EM; Beelen S; Sobott F; Strelkov SV; Weeks SD
    J Biol Chem; 2017 Jun; 292(24):9944-9957. PubMed ID: 28487364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaperone activity of human small heat shock protein-GST fusion proteins.
    Arbach H; Butler C; McMenimen KA
    Cell Stress Chaperones; 2017 Jul; 22(4):503-515. PubMed ID: 28130664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the N- and C-terminal sequences in Hsp27 self-association and chaperone activity.
    Lelj-Garolla B; Mauk AG
    Protein Sci; 2012 Jan; 21(1):122-33. PubMed ID: 22057845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and orientation of T4 lysozyme bound to the small heat shock protein alpha-crystallin.
    Claxton DP; Zou P; Mchaourab HS
    J Mol Biol; 2008 Jan; 375(4):1026-39. PubMed ID: 18062989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cryoelectron microscopy analysis of small heat shock protein 16.5 (Hsp16.5) complexes with T4 lysozyme reveals the structural basis of multimode binding.
    Shi J; Koteiche HA; McDonald ET; Fox TL; Stewart PL; McHaourab HS
    J Biol Chem; 2013 Feb; 288(7):4819-30. PubMed ID: 23277356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Mutants of Human Small Heat Shock Protein HspB1 Carrying Replacements in the N-Terminal Domain and Associated with Hereditary Motor Neuron Diseases.
    Muranova LK; Weeks SD; Strelkov SV; Gusev NB
    PLoS One; 2015; 10(5):e0126248. PubMed ID: 25965061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering of a Polydisperse Small Heat-Shock Protein Reveals Conserved Motifs of Oligomer Plasticity.
    Mishra S; Chandler SA; Williams D; Claxton DP; Koteiche HA; Stewart PL; Benesch JLP; Mchaourab HS
    Structure; 2018 Aug; 26(8):1116-1126.e4. PubMed ID: 29983375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and properties of G84R and L99M mutants of human small heat shock protein HspB1 correlating with motor neuropathy.
    Nefedova VV; Sudnitsyna MV; Strelkov SV; Gusev NB
    Arch Biochem Biophys; 2013 Oct; 538(1):16-24. PubMed ID: 23948568
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conditional Disorder in Small Heat-shock Proteins.
    Alderson TR; Ying J; Bax A; Benesch JLP; Baldwin AJ
    J Mol Biol; 2020 Apr; 432(9):3033-3049. PubMed ID: 32081587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity.
    Jovcevski B; Kelly MA; Rote AP; Berg T; Gastall HY; Benesch JL; Aquilina JA; Ecroyd H
    Chem Biol; 2015 Feb; 22(2):186-95. PubMed ID: 25699602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attempt to optimize some properties of fluorescent chimeras of human small heat shock protein HspB1 by modifying linker length and nature.
    Datskevich PN; Muranova LK; Gusev NB
    Biochemistry (Mosc); 2015 Jan; 80(1):67-73. PubMed ID: 25754041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of chaperone function in small heat-shock proteins. Fluorescence studies of the conformations of T4 lysozyme bound to alphaB-crystallin.
    Sathish HA; Stein RA; Yang G; Mchaourab HS
    J Biol Chem; 2003 Nov; 278(45):44214-21. PubMed ID: 12928430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of the Arginine in the Conserved N-Terminal Domain RLFDQxFG Motif of Human Small Heat Shock Proteins HspB1, HspB4, HspB5, HspB6, and HspB8.
    Shatov VM; Weeks SD; Strelkov SV; Gusev NB
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30036999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the Effect of Phosphorylation on the Structure and Dynamics of Hsp27 Dimers by Means of Ion Mobility Mass Spectrometry.
    Jovcevski B; Kelly MA; Aquilina JA; Benesch JLP; Ecroyd H
    Anal Chem; 2017 Dec; 89(24):13275-13282. PubMed ID: 29135234
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local unfolding of the HSP27 monomer regulates chaperone activity.
    Alderson TR; Roche J; Gastall HY; Dias DM; Pritišanac I; Ying J; Bax A; Benesch JLP; Baldwin AJ
    Nat Commun; 2019 Mar; 10(1):1068. PubMed ID: 30842409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent interactions and protein dynamics in spin-labeled T4 lysozyme.
    Stoica I
    J Biomol Struct Dyn; 2004 Jun; 21(6):745-60. PubMed ID: 15106997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimer-monomer equilibrium of human HSP27 is influenced by the in-cell macromolecular crowding environment and is controlled by fatty acids and heat.
    Sato SB; Sugiura M; Kurihara T
    Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):692-701. PubMed ID: 29635040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A weakened interface in the P182L variant of HSP27 associated with severe Charcot-Marie-Tooth neuropathy causes aberrant binding to interacting proteins.
    Alderson TR; Adriaenssens E; Asselbergh B; Pritišanac I; Van Lent J; Gastall HY; Wälti MA; Louis JM; Timmerman V; Baldwin AJ; Lp Benesch J
    EMBO J; 2021 Apr; 40(8):e103811. PubMed ID: 33644875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.