These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22264123)

  • 1. Inactivation and magnetic separation of bacteria from liquid suspensions using electrosprayed and nonelectrosprayed nZVI particles: observations and mechanisms.
    Chen Q; Gao M; Li J; Shen F; Wu Y; Xu Z; Yao M
    Environ Sci Technol; 2012 Feb; 46(4):2360-7. PubMed ID: 22264123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Use of zero-valent iron nanoparticles in inactivating microbes.
    Diao M; Yao M
    Water Res; 2009 Dec; 43(20):5243-51. PubMed ID: 19783027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron.
    Chen J; Xiu Z; Lowry GV; Alvarez PJ
    Water Res; 2011 Feb; 45(5):1995-2001. PubMed ID: 21232782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli.
    Li Z; Greden K; Alvarez PJ; Gregory KB; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3462-7. PubMed ID: 20355703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid magnetic removal of aqueous heavy metals and their relevant mechanisms using nanoscale zero valent iron (nZVI) particles.
    Huang P; Ye Z; Xie W; Chen Q; Li J; Xu Z; Yao M
    Water Res; 2013 Aug; 47(12):4050-8. PubMed ID: 23566331
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Response surface methodology as a tool for modeling and optimization of Bacillus subtilis spores inactivation by UV/ nano-Fe
    Yousefzadeh S; Matin AR; Ahmadi E; Sabeti Z; Alimohammadi M; Aslani H; Nabizadeh R
    Food Chem Toxicol; 2018 Apr; 114():334-345. PubMed ID: 29481893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of nanoscale zero valent iron on bacteria is growth phase dependent.
    Chaithawiwat K; Vangnai A; McEvoy JM; Pruess B; Krajangpan S; Khan E
    Chemosphere; 2016 Feb; 144():352-9. PubMed ID: 26378872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The dual effects of carboxymethyl cellulose on the colloidal stability and toxicity of nanoscale zero-valent iron.
    Dong H; Xie Y; Zeng G; Tang L; Liang J; He Q; Zhao F; Zeng Y; Wu Y
    Chemosphere; 2016 Feb; 144():1682-9. PubMed ID: 26519799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of E. coli, B. subtilis spores, and MS2, T4, and T7 phage using UV/H2O2 advanced oxidation.
    Mamane H; Shemer H; Linden KG
    J Hazard Mater; 2007 Jul; 146(3):479-86. PubMed ID: 17532124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli, enterococci, and Bacteroides thetaiotaomicron qPCR signals through wastewater and septage treatment.
    Srinivasan S; Aslan A; Xagoraraki I; Alocilja E; Rose JB
    Water Res; 2011 Apr; 45(8):2561-72. PubMed ID: 21420709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriostatic impact of nanoscale zero-valent iron against pathogenic bacteria in the municipal wastewater.
    Sadek AH; Asker MS; Abdelhamid SA
    Biologia (Bratisl); 2021; 76(9):2785-2809. PubMed ID: 34219748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge.
    Wu D; Shen Y; Ding A; Mahmood Q; Liu S; Tu Q
    J Hazard Mater; 2013 Nov; 262():649-55. PubMed ID: 24121637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp.
    Xiu ZM; Gregory KB; Lowry GV; Alvarez PJ
    Environ Sci Technol; 2010 Oct; 44(19):7647-51. PubMed ID: 20804135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles.
    Martin JE; Herzing AA; Yan W; Li XQ; Koel BE; Kiely CJ; Zhang WX
    Langmuir; 2008 Apr; 24(8):4329-34. PubMed ID: 18303928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectrocatalytic disinfection of water and wastewater: performance evaluation by qPCR and culture techniques.
    Venieri D; Chatzisymeon E; Politi E; Sofianos SS; Katsaounis A; Mantzavinos D
    J Water Health; 2013 Mar; 11(1):21-9. PubMed ID: 23428546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial toxicity comparison between nano- and micro-scaled oxide particles.
    Jiang W; Mashayekhi H; Xing B
    Environ Pollut; 2009 May; 157(5):1619-25. PubMed ID: 19185963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles.
    Kim JY; Lee C; Love DC; Sedlak DL; Yoon J; Nelson KL
    Environ Sci Technol; 2011 Aug; 45(16):6978-84. PubMed ID: 21726084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.