These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 2226441)
1. Ornithine/phosphate antiport in rat kidney mitochondria. Some characteristics of the process. Passarella S; Atlante A; Quagliariello E Eur J Biochem; 1990 Oct; 193(1):221-7. PubMed ID: 2226441 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of proline/glutamate antiport in rat kidney mitochondria. Energy dependence and glutamate-carrier involvement. Atlante A; Passarella S; Pierro P; Di Martino C; Quagliariello E Eur J Biochem; 1996 Oct; 241(1):171-7. PubMed ID: 8898903 [TBL] [Abstract][Full Text] [Related]
3. Metabolite transport in rat kidney mitochondria: ornithine/phosphate translocator. Passarella S; Atlante A; Quagliariello E Biochem Biophys Res Commun; 1989 Feb; 158(3):870-9. PubMed ID: 2563942 [TBL] [Abstract][Full Text] [Related]
4. Dependence of mitochondrial coenzyme A uptake on the membrane electrical gradient. Tahiliani AG J Biol Chem; 1989 Nov; 264(31):18426-32. PubMed ID: 2553708 [TBL] [Abstract][Full Text] [Related]
5. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria: electrical nature and coupling of the exchange reaction with H+ translocation. Indiveri C; Tonazzi A; Stipani I; Palmieri F Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):349-55. PubMed ID: 9359400 [TBL] [Abstract][Full Text] [Related]
6. Effect of phosphate and ionophores on (14C)-NEM incorporation in mitochondrial membranes and relationships with phosphate carrier system. Briand Y; Debise R; Durand R Biochimie; 1975; 57(6-7):787-96. PubMed ID: 1203324 [TBL] [Abstract][Full Text] [Related]
7. Evidence for mitochondrial localization of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea in human colon adenocarcinoma cells. Houghton PJ; Bailey FC; Houghton JA; Murti KG; Howbert JJ; Grindey GB Cancer Res; 1990 Feb; 50(3):664-8. PubMed ID: 2297707 [TBL] [Abstract][Full Text] [Related]
8. The purified and reconstituted ornithine/citrulline carrier from rat liver mitochondria catalyses a second transport mode: ornithine+/H+ exchange. Indiveri C; Tonazzi A; Stipani I; Palmieri F Biochem J; 1999 Aug; 341 ( Pt 3)(Pt 3):705-11. PubMed ID: 10417335 [TBL] [Abstract][Full Text] [Related]
9. Mechanism of active shrinkage in mitochondria. I. Coupling between weak electrolyte fluxes. Azzone GF; Massari S; Pozzan T Biochim Biophys Acta; 1976 Jan; 423(1):15-26. PubMed ID: 1247603 [TBL] [Abstract][Full Text] [Related]
10. Histone inhibition of mitochondrial proton transport. Hillar M Arch Int Physiol Biochim; 1978 May; 86(2):227-33. PubMed ID: 80979 [TBL] [Abstract][Full Text] [Related]
11. Studies on calcium transport during growth and sporulation. Seto-Young DL; Ellar DJ Microbios; 1981; 30(121-122):191-208. PubMed ID: 6796806 [TBL] [Abstract][Full Text] [Related]
12. The Na(+)-independent Ca2+ efflux system in mitochondria is a Ca2+/2H+ exchange system. Rottenberg H; Marbach M FEBS Lett; 1990 Nov; 274(1-2):65-8. PubMed ID: 2253785 [TBL] [Abstract][Full Text] [Related]
13. Relationship of transmembrane pH and electrical gradients with respiration and adenosine 5'-triphosphate synthesis in mitochondria. Holian A; Wilson DF Biochemistry; 1980 Sep; 19(18):4213-21. PubMed ID: 7417402 [TBL] [Abstract][Full Text] [Related]
14. Calcium transport driven by a proton gradient and inverted membrane vesicles of Escherichia coli. Tsuchiya T; Rosen BP J Biol Chem; 1976 Feb; 251(4):962-7. PubMed ID: 2608 [TBL] [Abstract][Full Text] [Related]
15. Control of electron transfer in the cytochrome system of mitochondria by pH, transmembrane pH gradient and electrical potential. The cytochromes b-c segment. Papa S; Lorusso M; Izzo G; Capuano F Biochem J; 1981 Feb; 194(2):395-406. PubMed ID: 7305997 [TBL] [Abstract][Full Text] [Related]
16. Compartmentation of inorganic phosphate in perfused rat liver. Can cytosol be distinguished from mitochondria by 31P NMR? Thiaudiere E; Gallis JL; Dufour S; Rousse N; Canioni P FEBS Lett; 1993 Sep; 330(2):231-5. PubMed ID: 8365493 [TBL] [Abstract][Full Text] [Related]
17. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles. Bassilana M; Damiano E; Leblanc G Biochemistry; 1984 Feb; 23(5):1015-22. PubMed ID: 6324854 [TBL] [Abstract][Full Text] [Related]
18. Evidence for net uptake and efflux of mitochondrial coenzyme A. Tahiliani AG Biochim Biophys Acta; 1991 Aug; 1067(1):29-37. PubMed ID: 1868101 [TBL] [Abstract][Full Text] [Related]
19. An improved procedure for reconstitution of the uncoupling protein and in-depth analysis of H+/OH- transport. Winkler E; Klingenberg M Eur J Biochem; 1992 Jul; 207(1):135-45. PubMed ID: 1378400 [TBL] [Abstract][Full Text] [Related]
20. The effect of ionophores on phosphate and arsenate transport in Micrococcus lysodeikticus. Friedberg I FEBS Lett; 1977 Sep; 81(2):264-6. PubMed ID: 21813 [No Abstract] [Full Text] [Related] [Next] [New Search]