BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 22264529)

  • 1. Applications of fluorescence lifetime spectroscopy and imaging to lipid domains in vivo.
    Bastos AE; Scolari S; Stöckl M; Almeida RF
    Methods Enzymol; 2012; 504():57-81. PubMed ID: 22264529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells.
    Gombos I; Steinbach G; Pomozi I; Balogh A; Vámosi G; Gansen A; László G; Garab G; Matkó J
    Cytometry A; 2008 Mar; 73(3):220-9. PubMed ID: 18163467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane lipid domains and rafts: current applications of fluorescence lifetime spectroscopy and imaging.
    de Almeida RF; Loura LM; Prieto M
    Chem Phys Lipids; 2009 Feb; 157(2):61-77. PubMed ID: 18723009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative microscopy: protein dynamics and membrane organisation.
    Owen DM; Williamson D; Rentero C; Gaus K
    Traffic; 2009 Aug; 10(8):962-71. PubMed ID: 19416480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent probes for lipid rafts: from model membranes to living cells.
    Klymchenko AS; Kreder R
    Chem Biol; 2014 Jan; 21(1):97-113. PubMed ID: 24361047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The lipid raft hypothesis revisited--new insights on raft composition and function from super-resolution fluorescence microscopy.
    Owen DM; Magenau A; Williamson D; Gaus K
    Bioessays; 2012 Sep; 34(9):739-47. PubMed ID: 22696155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical techniques for imaging membrane domains in live cells (live-cell palm of protein clustering).
    Owen DM; Williamson D; Magenau A; Gaus K
    Methods Enzymol; 2012; 504():221-35. PubMed ID: 22264537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of lipid domains in model and cell membranes by fluorescence lifetime imaging microscopy.
    Stöckl MT; Herrmann A
    Biochim Biophys Acta; 2010 Jul; 1798(7):1444-56. PubMed ID: 20056106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorescence correlation methods for imaging cellular behavior of sphingolipid-interacting probes.
    Kraut R; Bag N; Wohland T
    Methods Cell Biol; 2012; 108():395-427. PubMed ID: 22325612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hierarchical organization of the plasma membrane: investigations by single-molecule tracking vs. fluorescence correlation spectroscopy.
    Kusumi A; Shirai YM; Koyama-Honda I; Suzuki KG; Fujiwara TK
    FEBS Lett; 2010 May; 584(9):1814-23. PubMed ID: 20178787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is a fluid-mosaic model of biological membranes fully relevant? Studies on lipid organization in model and biological membranes.
    Wiśniewska A; Draus J; Subczynski WK
    Cell Mol Biol Lett; 2003; 8(1):147-59. PubMed ID: 12655369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting membrane proteins to liquid-ordered phases: molecular self-organization explored by fluorescence correlation spectroscopy.
    Kahya N
    Chem Phys Lipids; 2006 Jun; 141(1-2):158-68. PubMed ID: 16696961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visualizing lipid structure and raft domains in living cells with two-photon microscopy.
    Gaus K; Gratton E; Kable EP; Jones AS; Gelissen I; Kritharides L; Jessup W
    Proc Natl Acad Sci U S A; 2003 Dec; 100(26):15554-9. PubMed ID: 14673117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FLIM-FRET and FRAP reveal association of influenza virus haemagglutinin with membrane rafts.
    Engel S; Scolari S; Thaa B; Krebs N; Korte T; Herrmann A; Veit M
    Biochem J; 2010 Jan; 425(3):567-73. PubMed ID: 19888915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid domain association of influenza virus proteins detected by dynamic fluorescence microscopy techniques.
    Veit M; Engel S; Thaa B; Scolari S; Herrmann A
    Cell Microbiol; 2013 Feb; 15(2):179-89. PubMed ID: 23057766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence correlation studies of lipid domains in model membranes.
    Kahya N; Schwille P
    Mol Membr Biol; 2006; 23(1):29-39. PubMed ID: 16611578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy.
    Schütz GJ; Kada G; Pastushenko VP; Schindler H
    EMBO J; 2000 Mar; 19(5):892-901. PubMed ID: 10698931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of lipid raft partitioning of fluorescently-tagged probes in living cells by Fluorescence Correlation Spectroscopy (FCS).
    Marquer C; Lévêque-Fort S; Potier MC
    J Vis Exp; 2012 Apr; (62):e3513. PubMed ID: 22508446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detecting nanodomains in living cell membrane by fluorescence correlation spectroscopy.
    He HT; Marguet D
    Annu Rev Phys Chem; 2011; 62():417-36. PubMed ID: 21219145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photophysics of a Rhodamine head labeled phospholipid in the identification and characterization of membrane lipid phases.
    Castro BM; de Almeida RF; Fedorov A; Prieto M
    Chem Phys Lipids; 2012 Apr; 165(3):311-9. PubMed ID: 22405877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.