These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 2226470)
1. The role of an invariant tryptophan residue in alpha-bungarotoxin and cobrotoxin. Investigation of active derivatives with the invariant tryptophan replaced by kynurenine. Chang CC; Kawata Y; Sakiyama F; Hayashi K Eur J Biochem; 1990 Oct; 193(2):567-72. PubMed ID: 2226470 [TBL] [Abstract][Full Text] [Related]
2. Status of tryptophan residue in cobrotoxin and alpha-bungarotoxin. Chang LS; Kuo KW; Chang CC Biochem Mol Biol Int; 1993 Mar; 29(3):435-42. PubMed ID: 8485461 [TBL] [Abstract][Full Text] [Related]
3. Comparative studies on the status of invariant tryptophan residue in alpha-bungarotoxin and cobrotoxin. Chang CC; Kawata Y; Sakiyama F Gaoxiong Yi Xue Ke Xue Za Zhi; 1986 Oct; 2(10):639-53. PubMed ID: 3482680 [No Abstract] [Full Text] [Related]
4. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus. Chang LS; Lin SR; Chang CC Arch Biochem Biophys; 1998 Jun; 354(1):1-8. PubMed ID: 9633591 [TBL] [Abstract][Full Text] [Related]
5. Probing local secondary structure by fluorescence: time-resolved and circular dichroism studies of highly purified neurotoxins. Dahms TE; Szabo AG Biophys J; 1995 Aug; 69(2):569-76. PubMed ID: 8527671 [TBL] [Abstract][Full Text] [Related]
6. Glutaraldehyde cross-linking alters the environment around Trp(29) of cobrotoxin and the pathway for regaining its fine structure during refolding. Chang LS; Lin SR; Yang CC J Pept Res; 2001 Aug; 58(2):173-9. PubMed ID: 11532076 [TBL] [Abstract][Full Text] [Related]
7. Immunological neutralization of cobrotoxin by its homologous precipitin and non-precipitin antibodies. Kuo KW; Chang LS; Lin PM; Leaber RJ; Chang CC J Biochem; 1994 Dec; 116(6):1227-32. PubMed ID: 7706210 [TBL] [Abstract][Full Text] [Related]
8. Refolding of Taiwan cobra neurotoxin: intramolecular cross-link affects its refolding reaction. Chang LS; Lin SR; Yang CC Arch Biochem Biophys; 2001 Mar; 387(2):289-96. PubMed ID: 11370853 [TBL] [Abstract][Full Text] [Related]
9. Chemical modification of tryptophan residues in alpha-neurotoxins from Ophiophagus hannah (king cobra) venom. Chang CC; Lin PM; Chang LS; Kuo KW J Protein Chem; 1995 Feb; 14(2):89-94. PubMed ID: 7786410 [TBL] [Abstract][Full Text] [Related]
10. High affinity antibody to cobrotoxin prepared from the derivatives of glutaraldehyde-detoxified cobrotoxin. Kuo KW; Chang CC J Biochem; 1991 Dec; 110(6):863-7. PubMed ID: 1794976 [TBL] [Abstract][Full Text] [Related]
11. Proton-nuclear-magnetic-resonance study on molecular conformations of long neurotoxins. alpha-Bungarotoxin from Bungarus multicinctus and Toxin B from Naja naja. Endo T; Inagaki F; Hayashi K; Miyazawa T Eur J Biochem; 1981 Nov; 120(1):117-24. PubMed ID: 7308209 [TBL] [Abstract][Full Text] [Related]
12. A comparative investigation of snake venom neurotoxins and their triplet-state tryptophan-disulfide interactions using phosphorescence and optically detected magnetic resonance. Schlyer BD; Lau E; Maki AH Biochemistry; 1992 May; 31(18):4375-83. PubMed ID: 1581293 [TBL] [Abstract][Full Text] [Related]
13. Roles of the aromatic residues in cobrotoxin in antigenicity and binding activity to nicotinic acetylcholine receptor. Kuo KW; Chang CC Biochem Int; 1992 Jul; 27(3):397-406. PubMed ID: 1384491 [TBL] [Abstract][Full Text] [Related]
14. Role of amino and carboxyl groups of cobrotoxin in the conformational stability and the interaction with acetylcholine receptor. Kuo KW; Chang LS; Chang CC Int J Pept Protein Res; 1995 Aug; 46(2):181-5. PubMed ID: 8567173 [TBL] [Abstract][Full Text] [Related]
15. Chemical modification of arginine residues in alpha-bungarotoxin. Lin SR; Chang CC Biochim Biophys Acta; 1992 Oct; 1159(3):255-61. PubMed ID: 1390930 [TBL] [Abstract][Full Text] [Related]
16. The structural loop II of cobrotoxin is the main binding region for nAChR and epitope in the region is conformation-dependent. Kuo KW; Chang LS; Chang CC J Biochem; 1995 Feb; 117(2):438-42. PubMed ID: 7541791 [TBL] [Abstract][Full Text] [Related]
17. Enrichment of the antibodies against the C-terminus of Taiwan cobra cobrotoxin using dimeric glutaraldehyde-modified toxin as an immunogen. Chang LS; Lin R; Chen KC; Chang CC Toxicon; 2003 Feb; 41(2):181-6. PubMed ID: 12565737 [TBL] [Abstract][Full Text] [Related]
18. Raman spectra of some snake venom components. Takamatsu T; Harada I; Hayashi K Biochim Biophys Acta; 1980 Apr; 622(2):189-200. PubMed ID: 7378448 [TBL] [Abstract][Full Text] [Related]
19. Substitution of Torpedo acetylcholine receptor alpha 1-subunit residues with snake alpha 1- and rat nerve alpha 3-subunit residues in recombinant fusion proteins: effect on alpha-bungarotoxin binding. Chaturvedi V; Donnelly-Roberts DL; Lentz TL Biochemistry; 1992 Feb; 31(5):1370-5. PubMed ID: 1736994 [TBL] [Abstract][Full Text] [Related]
20. Expression and mutagenesis studies of cobrotoxin from Taiwan cobra. Chang LS; Chen KC; Wu BN; Lin SK; Wu PF; Hong YR; Yang CC Biochem Biophys Res Commun; 1999 Oct; 263(3):652-6. PubMed ID: 10512733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]