BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 22264734)

  • 1. Canonical Wnt signaling dynamically controls multiple stem cell fate decisions during vertebrate body formation.
    Martin BL; Kimelman D
    Dev Cell; 2012 Jan; 22(1):223-32. PubMed ID: 22264734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wnt signaling balances specification of the cardiac and pharyngeal muscle fields.
    Mandal A; Holowiecki A; Song YC; Waxman JS
    Mech Dev; 2017 Feb; 143():32-41. PubMed ID: 28087459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transmembrane protein 88: a Wnt regulatory protein that specifies cardiomyocyte development.
    Palpant NJ; Pabon L; Rabinowitz JS; Hadland BK; Stoick-Cooper CL; Paige SL; Bernstein ID; Moon RT; Murry CE
    Development; 2013 Sep; 140(18):3799-808. PubMed ID: 23924634
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wnt signaling positively regulates endothelial cell fate specification in the Fli1a-positive progenitor population via Lef1.
    Hübner K; Grassme KS; Rao J; Wenke NK; Zimmer CL; Korte L; Müller K; Sumanas S; Greber B; Herzog W
    Dev Biol; 2017 Oct; 430(1):142-155. PubMed ID: 28811218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New aspects of Wnt signaling pathways in higher vertebrates.
    Huelsken J; Birchmeier W
    Curr Opin Genet Dev; 2001 Oct; 11(5):547-53. PubMed ID: 11532397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wnt signaling and tbx16 form a bistable switch to commit bipotential progenitors to mesoderm.
    Bouldin CM; Manning AJ; Peng YH; Farr GH; Hung KL; Dong A; Kimelman D
    Development; 2015 Jul; 142(14):2499-507. PubMed ID: 26062939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ptk7 promotes non-canonical Wnt/PCP-mediated morphogenesis and inhibits Wnt/β-catenin-dependent cell fate decisions during vertebrate development.
    Hayes M; Naito M; Daulat A; Angers S; Ciruna B
    Development; 2013 Apr; 140(8):1807-18. PubMed ID: 23533179
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinct phases of Wnt/β-catenin signaling direct cardiomyocyte formation in zebrafish.
    Dohn TE; Waxman JS
    Dev Biol; 2012 Jan; 361(2):364-76. PubMed ID: 22094017
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm.
    Lindsley RC; Gill JG; Kyba M; Murphy TL; Murphy KM
    Development; 2006 Oct; 133(19):3787-96. PubMed ID: 16943279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of canonical Wnt signaling/ß-catenin via Dermo1 in cranial dermal cell development.
    Tran TH; Jarrell A; Zentner GE; Welsh A; Brownell I; Scacheri PC; Atit R
    Development; 2010 Dec; 137(23):3973-84. PubMed ID: 20980404
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wnt signaling is required for early development of zebrafish swimbladder.
    Yin A; Korzh S; Winata CL; Korzh V; Gong Z
    PLoS One; 2011 Mar; 6(3):e18431. PubMed ID: 21479192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesodermal fate decisions of a stem cell: the Wnt switch.
    Davis LA; Zur Nieden NI
    Cell Mol Life Sci; 2008 Sep; 65(17):2658-74. PubMed ID: 18528633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wnt/beta-catenin signaling is involved in the induction and maintenance of primitive hematopoiesis in the vertebrate embryo.
    Tran HT; Sekkali B; Van Imschoot G; Janssens S; Vleminckx K
    Proc Natl Acad Sci U S A; 2010 Sep; 107(37):16160-5. PubMed ID: 20805504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement of Wnt/beta-catenin signaling in pronephric kidney development.
    Lyons JP; Miller RK; Zhou X; Weidinger G; Deroo T; Denayer T; Park JI; Ji H; Hong JY; Li A; Moon RT; Jones EA; Vleminckx K; Vize PD; McCrea PD
    Mech Dev; 2009; 126(3-4):142-59. PubMed ID: 19100832
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anterior-posterior differences in vertebrate segments: specification of trunk and tail somites in the zebrafish blastula.
    Holley SA
    Genes Dev; 2006 Jul; 20(14):1831-7. PubMed ID: 16847343
    [No Abstract]   [Full Text] [Related]  

  • 16. Custos controls β-catenin to regulate head development during vertebrate embryogenesis.
    Komiya Y; Mandrekar N; Sato A; Dawid IB; Habas R
    Proc Natl Acad Sci U S A; 2014 Sep; 111(36):13099-104. PubMed ID: 25157132
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatio-temporal regulation of Wnt and retinoic acid signaling by tbx16/spadetail during zebrafish mesoderm differentiation.
    Mueller RL; Huang C; Ho RK
    BMC Genomics; 2010 Sep; 11():492. PubMed ID: 20828405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The zebrafish tailbud contains two independent populations of midline progenitor cells that maintain long-term germ layer plasticity and differentiate in response to local signaling cues.
    Row RH; Tsotras SR; Goto H; Martin BL
    Development; 2016 Jan; 143(2):244-54. PubMed ID: 26674311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A transgenic wnt8a:PAC reporter reveals biphasic regulation of vertebrate mesoderm development.
    Narayanan A; Thompson SA; Lee JJ; Lekven AC
    Dev Dyn; 2011 Apr; 240(4):898-907. PubMed ID: 21384472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Canonical Wnt Signaling During Early Zebrafish Development Perturbs the Interaction of Cardiac Mesoderm and Pharyngeal Endoderm and Causes Thyroid Specification Defects.
    Vandernoot I; Haerlingen B; Gillotay P; Trubiroha A; Janssens V; Opitz R; Costagliola S
    Thyroid; 2021 Mar; 31(3):420-438. PubMed ID: 32777984
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 17.