BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 22264794)

  • 1. Study of electron densities of normal and neoplastic human breast tissues by Compton scattering using synchrotron radiation.
    Antoniassi M; Conceição AL; Poletti ME
    Appl Radiat Isot; 2012 Jul; 70(7):1351-4. PubMed ID: 22264794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary study of human breast tissue using synchrotron radiation combining WAXS and SAXS techniques.
    Conceição AL; Antoniassi M; Poletti ME; Caldas LV
    Appl Radiat Isot; 2010; 68(4-5):799-803. PubMed ID: 19857973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The use of Compton scattering to differentiate between classifications of normal and diseased breast tissue.
    Ryan EA; Farquharson MJ; Flinton DM
    Phys Med Biol; 2005 Jul; 50(14):3337-48. PubMed ID: 16177513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compton scattering spectrum as a source of information of normal and neoplastic breast tissues' composition.
    Antoniassi M; Conceição AL; Poletti ME
    Appl Radiat Isot; 2012 Jul; 70(7):1451-5. PubMed ID: 22398323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron density of normal and pathological breast tissues using a Compton scattering technique.
    al-Bahri JS; Spyrou NM
    Appl Radiat Isot; 1998 Dec; 49(12):1677-84. PubMed ID: 9745699
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The determination of electron density by the dual-energy Compton scatter method.
    Huddleston AL; Sackler JP
    Med Phys; 1985; 12(1):13-9. PubMed ID: 3974520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Apparatus for time-resolved and energy-resolved measurement of internal conversion electron emission induced by nuclear resonant excitation with synchrotron radiation.
    Kawauchi T; Matsumoto M; Fukutani K; Okano T; Kishimoto S; Zhang X; Yoda Y
    Rev Sci Instrum; 2007 Jan; 78(1):013303. PubMed ID: 17503914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterns of ice formation in normal and malignant breast tissue.
    Hong JS; Rubinsky B
    Cryobiology; 1994 Apr; 31(2):109-20. PubMed ID: 8004992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependent spin momentum densities in Ni-Mn-In alloys.
    Ahuja BL; Dashora A; Heda NL; Priolkar KR; Vadkhiya L; Itou M; Lobo N; Sakurai Y; Chakrabarti A; Singh S; Barman SR
    J Phys Condens Matter; 2010 Nov; 22(44):446001. PubMed ID: 21403357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of the linear attenuation coefficients of breast tissues by synchrotron radiation computed tomography.
    Chen RC; Longo R; Rigon L; Zanconati F; De Pellegrin A; Arfelli F; Dreossi D; Menk RH; Vallazza E; Xiao TQ; Castelli E
    Phys Med Biol; 2010 Sep; 55(17):4993-5005. PubMed ID: 20702925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic properties of PbCl2 and PbBr2 using Compton scattering technique.
    Ahmed G; Sharma Y; Ahuja BL
    Appl Radiat Isot; 2009 Jun; 67(6):1050-6. PubMed ID: 19269187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monochromatic beam characterization for Auger electron dosimetry and radiotherapy.
    Dugas JP; Oves SD; Sajo E; Matthews KL; Ham K; Hogstrom KR
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S137-41. PubMed ID: 18599232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase contrast imaging of breast tumours with synchrotron radiation.
    Olivo A; Rigon L; Vinnicombe SJ; Cheung KC; Ibison M; Speller RD
    Appl Radiat Isot; 2009 Jun; 67(6):1033-41. PubMed ID: 19249215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reducing radiation damage in macromolecular crystals at synchrotron sources.
    Stern EA; Yacoby Y; Seidler GT; Nagle KP; Prange MP; Sorini AP; Rehr JJ; Joachimiak A
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):366-74. PubMed ID: 19307718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-energy inelastic-scattering beamline for electron momentum density study.
    Sakurai Y
    J Synchrotron Radiat; 1998 May; 5(Pt 3):208-14. PubMed ID: 15263480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrimination of normal, benign, and malignant breast tissues by Raman spectroscopy.
    Chowdary MV; Kumar KK; Kurien J; Mathew S; Krishna CM
    Biopolymers; 2006 Dec; 83(5):556-69. PubMed ID: 16897764
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Breast tissue classification using x-ray scattering measurements and multivariate data analysis.
    Ryan EA; Farquharson MJ
    Phys Med Biol; 2007 Nov; 52(22):6679-96. PubMed ID: 17975291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchrotron photoactivation of cisplatin elicits an extra number of DNA breaks that stimulate RAD51-mediated repair pathways.
    Corde S; Balosso J; Elleaume H; Renier M; Joubert A; Biston MC; Adam JF; Charvet AM; Brochard T; Le Bas JF; Estève F; Foray N
    Cancer Res; 2003 Jun; 63(12):3221-7. PubMed ID: 12810651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microdosimetry in X-ray synchrotron based binary radiation therapy.
    Hugtenburg RP
    Eur J Radiol; 2008 Dec; 68(3 Suppl):S126-8. PubMed ID: 18599233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of some trace elements concentration in blood, tumor free breast and tumor tissues of women with benign and malignant breast lesions: an Indian study.
    Siddiqui MK; Jyoti ; Singh S; Mehrotra PK; Singh K; Sarangi R
    Environ Int; 2006 Jul; 32(5):630-7. PubMed ID: 16580070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.