BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 22265249)

  • 1. Predictive equations for lumbar spine loads in load-dependent asymmetric one- and two-handed lifting activities.
    Arjmand N; Plamondon A; Shirazi-Adl A; Parnianpour M; Larivière C
    Clin Biomech (Bristol, Avon); 2012 Jul; 27(6):537-44. PubMed ID: 22265249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive equations to estimate spinal loads in symmetric lifting tasks.
    Arjmand N; Plamondon A; Shirazi-Adl A; Larivière C; Parnianpour M
    J Biomech; 2011 Jan; 44(1):84-91. PubMed ID: 20850750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting.
    Arjmand N; Ekrami O; Shirazi-Adl A; Plamondon A; Parnianpour M
    J Biomech; 2013 May; 46(8):1454-62. PubMed ID: 23541615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models.
    Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C
    Clin Biomech (Bristol, Avon); 2009 Aug; 24(7):533-41. PubMed ID: 19493597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wrapping of trunk thoracic extensor muscles influences muscle forces and spinal loads in lifting tasks.
    Arjmand N; Shirazi-Adl A; Bazrgari B
    Clin Biomech (Bristol, Avon); 2006 Aug; 21(7):668-75. PubMed ID: 16678948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The load on the lumbar spine during asymmetrical bi-manual materials handling.
    Jäger M; Luttmann A
    Ergonomics; 1992; 35(7-8):783-805. PubMed ID: 1633789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subject-specific regression equations to estimate lower spinal loads during symmetric and asymmetric static lifting.
    Ghezelbash F; Shirazi-Adl A; El Ouaaid Z; Plamondon A; Arjmand N
    J Biomech; 2020 Mar; 102():109550. PubMed ID: 31932024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loading along the lumbar spine as influence by speed, control, load magnitude, and handle height during pushing.
    Marras WS; Knapik GG; Ferguson S
    Clin Biomech (Bristol, Avon); 2009 Feb; 24(2):155-63. PubMed ID: 19111950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the asymmetry multiplier in the 1991 NIOSH lifting equation adequately control the biomechanical loading of the spine?
    Lavender SA; Li YC; Natarajan RN; Andersson GB
    Ergonomics; 2009 Jan; 52(1):71-9. PubMed ID: 19308820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spine loading during asymmetric lifting using one versus two hands.
    Marras WS; Davis KG
    Ergonomics; 1998 Jun; 41(6):817-34. PubMed ID: 9629066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical response of a lumbar intervertebral disc to manual lifting activities: a poroelastic finite element model study.
    Natarajan RN; Lavender SA; An HA; Andersson GB
    Spine (Phila Pa 1976); 2008 Aug; 33(18):1958-65. PubMed ID: 18708928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of changes in lordosis on mechanics of the lumbar spine-lumbar curvature in lifting.
    Shirazi-Adl A; Parnianpour M
    J Spinal Disord; 1999 Oct; 12(5):436-47. PubMed ID: 10549710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element.
    Shirazi-Adl A
    J Biomech; 2006; 39(2):267-75. PubMed ID: 16321628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of backpacks on the lumbar spine in children: a standing magnetic resonance imaging study.
    Neuschwander TB; Cutrone J; Macias BR; Cutrone S; Murthy G; Chambers H; Hargens AR
    Spine (Phila Pa 1976); 2010 Jan; 35(1):83-8. PubMed ID: 20023607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trunk kinematics of one-handed lifting, and the effects of asymmetry and load weight.
    Allread WG; Marras WS; Parnianpour M
    Ergonomics; 1996 Feb; 39(2):322-34. PubMed ID: 8851536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of trunk muscle forces for flexion and extension by using a validated finite element model of the lumbar spine and measured in vivo data.
    Rohlmann A; Bauer L; Zander T; Bergmann G; Wilke HJ
    J Biomech; 2006; 39(6):981-9. PubMed ID: 16549091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities.
    Rajaee MA; Arjmand N; Shirazi-Adl A; Plamondon A; Schmidt H
    Appl Ergon; 2015 May; 48():22-32. PubMed ID: 25683528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanics of changes in lumbar posture in static lifting.
    Arjmand N; Shirazi-Adl A
    Spine (Phila Pa 1976); 2005 Dec; 30(23):2637-48. PubMed ID: 16319750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of posture on dynamic back loading during a cable lifting task.
    Gallagher S; Marras WS; Davis KG; Kovacs K
    Ergonomics; 2002 Apr; 45(5):380-98. PubMed ID: 12028722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relation between spinal load factors and the high-risk probability of occupational low-back disorder.
    Granata KP; Marras WS
    Ergonomics; 1999 Sep; 42(9):1187-99. PubMed ID: 10503053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.