These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 22265285)
1. Survival of freeze-dried microcapsules of α-galactosidase producing probiotics in a soy bar matrix. Chen M; Mustapha A Food Microbiol; 2012 May; 30(1):68-73. PubMed ID: 22265285 [TBL] [Abstract][Full Text] [Related]
2. Viability of lactic acid bacteria and bifidobacteria in fermented soymilk after drying, subsequent rehydration and storage. Wang YC; Yu RC; Chou CC Int J Food Microbiol; 2004 Jun; 93(2):209-17. PubMed ID: 15135959 [TBL] [Abstract][Full Text] [Related]
3. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. Yeo SK; Liong MT J Sci Food Agric; 2010 Jan; 90(2):267-75. PubMed ID: 20355041 [TBL] [Abstract][Full Text] [Related]
4. Preservation of functionality of Bifidobacterium animalis subsp. lactis INL1 after incorporation of freeze-dried cells into different food matrices. Vinderola G; Zacarías MF; Bockelmann W; Neve H; Reinheimer J; Heller KJ Food Microbiol; 2012 May; 30(1):274-80. PubMed ID: 22265312 [TBL] [Abstract][Full Text] [Related]
5. Role of glassy state on stabilities of freeze-dried probiotics. Santivarangkna C; Aschenbrenner M; Kulozik U; Foerst P J Food Sci; 2011 Oct; 76(8):R152-6. PubMed ID: 22417602 [TBL] [Abstract][Full Text] [Related]
6. Survival, acid and bile tolerance, and surface hydrophobicity of microencapsulated B. animalis ssp. lactis Bb12 during storage at room temperature. Dianawati D; Shah NP J Food Sci; 2011; 76(9):M592-9. PubMed ID: 22416710 [TBL] [Abstract][Full Text] [Related]
7. Microencapsulated Lactobacillus rhamnosus GG powders: relationship of powder physical properties to probiotic survival during storage. Ying DY; Phoon MC; Sanguansri L; Weerakkody R; Burgar I; Augustin MA J Food Sci; 2010; 75(9):E588-95. PubMed ID: 21535593 [TBL] [Abstract][Full Text] [Related]
8. Improved Viability of Microencapsulated Probiotics in a Freeze-Dried Banana Powder During Storage and Under Simulated Gastrointestinal Tract. Massounga Bora AF; Li X; Zhu Y; Du L Probiotics Antimicrob Proteins; 2019 Dec; 11(4):1330-1339. PubMed ID: 30232746 [TBL] [Abstract][Full Text] [Related]
9. Effect of microencapsulation methods on the survival of freeze-dried Bifidobacterium bifidum. Zhang F; Li XY; Park HJ; Zhao M J Microencapsul; 2013; 30(6):511-8. PubMed ID: 23405847 [TBL] [Abstract][Full Text] [Related]
10. Browning of freeze-dried probiotic bacteria cultures in relation to loss of viability during storage. Kurtmann L; Skibsted LH; Carlsen CU J Agric Food Chem; 2009 Aug; 57(15):6736-41. PubMed ID: 19591471 [TBL] [Abstract][Full Text] [Related]
11. Impact of inulin and okara on Lactobacillus acidophilus La-5 and Bifidobacterium animalis Bb-12 viability in a fermented soy product and probiotic survival under in vitro simulated gastrointestinal conditions. Bedani R; Rossi EA; Isay Saad SM Food Microbiol; 2013 Jun; 34(2):382-9. PubMed ID: 23541206 [TBL] [Abstract][Full Text] [Related]
13. Influence of microencapsulation and spray drying on the viability of Lactobacillus and Bifidobacterium strains. Goderska K; Czarnecki Z Pol J Microbiol; 2008; 57(2):135-40. PubMed ID: 18646401 [TBL] [Abstract][Full Text] [Related]
14. Influence of fermentation time, cryoprotectant and neutralization of cell concentrate on freeze-drying survival, storage stability, and acid and bile exposure of Bifidobacterium animalis ssp. lactis cells produced without milk-based ingredients. Saarela M; Virkajärvi I; Alakomi HL; Mattila-Sandholm T; Vaari A; Suomalainen T; Mättö J J Appl Microbiol; 2005; 99(6):1330-9. PubMed ID: 16313405 [TBL] [Abstract][Full Text] [Related]
15. Development of microparticulate systems for intestinal delivery of Lactobacillus acidophilus and Bifidobacterium lactis. Albertini B; Vitali B; Passerini N; Cruciani F; Di Sabatino M; Rodriguez L; Brigidi P Eur J Pharm Sci; 2010 Jul; 40(4):359-66. PubMed ID: 20420903 [TBL] [Abstract][Full Text] [Related]
16. Water activity-temperature state diagrams of freeze-dried Lactobacillus acidophilus (La-5): influence of physical state on bacterial survival during storage. Kurtmann L; Carlsen CU; Skibsted LH; Risbo J Biotechnol Prog; 2009; 25(1):265-70. PubMed ID: 19224603 [TBL] [Abstract][Full Text] [Related]
17. Microencapsulation of Lactobacillus plantarum (mtcc 5422) by spray-freeze-drying method and evaluation of survival in simulated gastrointestinal conditions. Dolly P; Anishaparvin A; Joseph GS; Anandharamakrishnan C J Microencapsul; 2011; 28(6):568-74. PubMed ID: 21827359 [TBL] [Abstract][Full Text] [Related]
18. Reduction of soybean oligosaccharides and properties of alpha-D-galactosidase from Lactobacillus curvatus R08 and Leuconostoc mesenteroides [corrected] JK55. Yoon MY; Hwang HJ Food Microbiol; 2008 Sep; 25(6):815-23. PubMed ID: 18620974 [TBL] [Abstract][Full Text] [Related]
19. Enzyme stability of microencapsulated Bifidobacterium animalis ssp. lactis Bb12 after freeze drying and during storage in low water activity at room temperature. Dianawati D; Shah NP J Food Sci; 2011 Aug; 76(6):M463-71. PubMed ID: 21696390 [TBL] [Abstract][Full Text] [Related]
20. Galacto-oligosaccharides as protective molecules in the preservation of Lactobacillus delbrueckii subsp. bulgaricus. Tymczyszyn EE; Gerbino E; Illanes A; Gómez-Zavaglia A Cryobiology; 2011 Apr; 62(2):123-9. PubMed ID: 21272570 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]