These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 22265465)

  • 1. Current trends in explosive detection techniques.
    Caygill JS; Davis F; Higson SP
    Talanta; 2012 Jan; 88():14-29. PubMed ID: 22265465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensors--an effective approach for the detection of explosives.
    Singh S
    J Hazard Mater; 2007 Jun; 144(1-2):15-28. PubMed ID: 17379401
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combating terrorism. New efforts to detect explosives require advances on many fronts.
    Bhattacharjee Y
    Science; 2008 Jun; 320(5882):1416-7. PubMed ID: 18556530
    [No Abstract]   [Full Text] [Related]  

  • 4. Instant detection and identification of concealed explosive-related compounds: Induced Stokes Raman versus infrared.
    Elbasuney S; El-Sherif AF
    Forensic Sci Int; 2017 Jan; 270():83-90. PubMed ID: 27923170
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing selectivity for TNT-based explosive detection by synchronous luminescence and derivative spectroscopy with quantum yields of selected aromatic amines.
    Sheaff CN; Eastwood D; Wai CM
    Appl Spectrosc; 2007 Jan; 61(1):68-73. PubMed ID: 17311719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of biosensors and biologically-inspired systems for explosives detection.
    Smith RG; D'Souza N; Nicklin S
    Analyst; 2008 May; 133(5):571-84. PubMed ID: 18427676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds.
    Liu YS; Ugaz VM; North SW; Rogers WJ; Mannan MS
    J Hazard Mater; 2007 Apr; 142(3):662-8. PubMed ID: 17034941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An in situ amperometric biosensor for the detection of vapours from explosive compounds.
    Gwenin CD; Kalaji M; Kay CM; Williams PA; Tito DN
    Analyst; 2008 May; 133(5):621-5. PubMed ID: 18427683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The orientationally controlled assembly of genetically modified enzymes in an amperometric biosensor.
    Gwenin CD; Kalaji M; Williams PA; Jones RM
    Biosens Bioelectron; 2007 Jun; 22(12):2869-75. PubMed ID: 17244521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in explosives analysis--part I: animal, chemical, ion, and mechanical methods.
    Brown KE; Greenfield MT; McGrane SD; Moore DS
    Anal Bioanal Chem; 2016 Jan; 408(1):35-47. PubMed ID: 26462922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trends in analysis of explosives by microchip electrophoresis and conventional CE.
    Pumera M
    Electrophoresis; 2008 Jan; 29(1):269-73. PubMed ID: 18058771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled biological and biomimetic systems for landmine detection.
    Habib MK
    Biosens Bioelectron; 2007 Aug; 23(1):1-18. PubMed ID: 17662594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of luminescent sensors based on transition metal complexes for the detection of nitroexplosives.
    Sathish V; Ramdass A; Velayudham M; Lu KL; Thanasekaran P; Rajagopal S
    Dalton Trans; 2017 Dec; 46(48):16738-16769. PubMed ID: 29125159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges.
    Liu A; Zhao Q; Guan X
    Anal Chim Acta; 2010 Aug; 675(2):106-15. PubMed ID: 20800721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The analysis of nitrate explosive vapour samples using Lab-on-a-chip instrumentation.
    Taranto V; Ueland M; Forbes SL; Blanes L
    J Chromatogr A; 2019 Sep; 1602():467-473. PubMed ID: 31178161
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photonic sensor devices for explosive detection.
    Willer U; Schade W
    Anal Bioanal Chem; 2009 Sep; 395(2):275-82. PubMed ID: 19597802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of chemical explosives using multiple photon signatures.
    Loschke KW; Dunn WL
    Appl Radiat Isot; 2010; 68(4-5):884-7. PubMed ID: 19913433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer-oligopeptide composite coating for selective detection of explosives in water.
    Cerruti M; Jaworski J; Raorane D; Zueger C; Varadarajan J; Carraro C; Lee SW; Maboudian R; Majumdar A
    Anal Chem; 2009 Jun; 81(11):4192-9. PubMed ID: 19476386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-situ detection of single particles of explosive on clothing with confocal Raman microscopy.
    Ali EM; Edwards HG; Scowen IJ
    Talanta; 2009 May; 78(3):1201-3. PubMed ID: 19269494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of volatile components of drugs and explosives by solid phase microextraction-ion mobility spectrometry.
    Lai H; Guerra P; Joshi M; Almirall JR
    J Sep Sci; 2008 Feb; 31(2):402-12. PubMed ID: 18196520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.