BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 22265484)

  • 41. SU8 diaphragm micropump with monolithically integrated cantilever check valves.
    Ezkerra A; Fernández LJ; Mayora K; Ruano-López JM
    Lab Chip; 2011 Oct; 11(19):3320-5. PubMed ID: 21853192
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An efficient planar accordion-shaped micromixer: from biochemical mixing to biological application.
    Cosentino A; Madadi H; Vergara P; Vecchione R; Causa F; Netti PA
    Sci Rep; 2015 Dec; 5():17876. PubMed ID: 26658848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantitative kinetic analysis in a microfluidic device using frequency-domain fluorescence lifetime imaging.
    Matthews SM; Elder AD; Yunus K; Kaminski CF; Brennan CM; Fisher AC
    Anal Chem; 2007 Jun; 79(11):4101-9. PubMed ID: 17472341
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rapid three-dimensional microfluidic mixer for high viscosity solutions to unravel earlier folding kinetics of G-quadruplex under molecular crowding conditions.
    Liu C; Li Y; Li Y; Chen P; Feng X; Du W; Liu BF
    Talanta; 2016; 149():237-243. PubMed ID: 26717836
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Low-temperature, simple and fast integration technique of microfluidic chips by using a UV-curable adhesive.
    Arayanarakool R; Le Gac S; van den Berg A
    Lab Chip; 2010 Aug; 10(16):2115-21. PubMed ID: 20556303
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Polymeric microfluidic continuous flow mixer combined with hyperspectral FT-IR imaging for studying rapid biomolecular events.
    Jang H; Pawate AS; Bhargava R; Kenis PJA
    Lab Chip; 2019 Aug; 19(15):2598-2609. PubMed ID: 31259340
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Recirculating, passive micromixer with a novel sawtooth structure.
    Nichols KP; Ferullo JR; Baeumner AJ
    Lab Chip; 2006 Feb; 6(2):242-6. PubMed ID: 16450034
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Optimizing micromixer design for enhancing dielectrophoretic microconcentrator performance.
    Lee HY; Voldman J
    Anal Chem; 2007 Mar; 79(5):1833-9. PubMed ID: 17253658
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Applications of micromixing technology.
    Jeong GS; Chung S; Kim CB; Lee SH
    Analyst; 2010 Mar; 135(3):460-73. PubMed ID: 20174696
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of microelectrodes for electrochemiluminescent detection in microfluidic devices.
    Fredrick SJ; Gross EM
    Bioanalysis; 2009 Apr; 1(1):31-6. PubMed ID: 21083185
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Microfluidic baker's transformation device for three-dimensional rapid mixing.
    Yasui T; Omoto Y; Osato K; Kaji N; Suzuki N; Naito T; Watanabe M; Okamoto Y; Tokeshi M; Shamoto E; Baba Y
    Lab Chip; 2011 Oct; 11(19):3356-60. PubMed ID: 21845274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Microfluidic T-form mixer utilizing switching electroosmotic flow.
    Lin CH; Fu LM; Chien YS
    Anal Chem; 2004 Sep; 76(18):5265-72. PubMed ID: 15362882
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Time-resolved mid-IR spectroscopy of (bio)chemical reactions in solution utilizing a new generation of continuous-flow micro-mixers.
    Wagner C; Buchegger W; Vellekoop M; Kraft M; Lendl B
    Anal Bioanal Chem; 2011 Jun; 400(8):2487-97. PubMed ID: 21369756
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Electroosmotic mixing in microchannels.
    Glasgow I; Batton J; Aubry N
    Lab Chip; 2004 Dec; 4(6):558-62. PubMed ID: 15570365
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Capillary-driven multiparametric microfluidic chips for one-step immunoassays.
    Gervais L; Hitzbleck M; Delamarche E
    Biosens Bioelectron; 2011 Sep; 27(1):64-70. PubMed ID: 21752632
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sustainable fabrication of micro-structured lab-on-a-chip.
    Oh HJ; Park JH; Lee SJ; Kim BI; Song YS; Youn JR
    Lab Chip; 2011 Dec; 11(23):3999-4005. PubMed ID: 21918762
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Towards real time analysis of protein secretion from single cells.
    Kortmann H; Kurth F; Blank LM; Dittrich PS; Schmid A
    Lab Chip; 2009 Nov; 9(21):3047-9. PubMed ID: 19823717
    [No Abstract]   [Full Text] [Related]  

  • 60. Uniform mixing in paper-based microfluidic systems using surface acoustic waves.
    Rezk AR; Qi A; Friend JR; Li WH; Yeo LY
    Lab Chip; 2012 Feb; 12(4):773-9. PubMed ID: 22193520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.