These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
331 related articles for article (PubMed ID: 22265610)
1. Acute and sub-lethal effects in juvenile Atlantic salmon exposed to low μg/L concentrations of Ag nanoparticles. Farmen E; Mikkelsen HN; Evensen O; Einset J; Heier LS; Rosseland BO; Salbu B; Tollefsen KE; Oughton DH Aquat Toxicol; 2012 Feb; 108():78-84. PubMed ID: 22265610 [TBL] [Abstract][Full Text] [Related]
2. Physiological, molecular, and cellular mechanisms of impaired seawater tolerance following exposure of Atlantic salmon, Salmo salar, smolts to acid and aluminum. Monette MY; Yada T; Matey V; McCormick SD Aquat Toxicol; 2010 Aug; 99(1):17-32. PubMed ID: 20483493 [TBL] [Abstract][Full Text] [Related]
3. Toxicity of titanium dioxide nanoparticles to rainbow trout (Oncorhynchus mykiss): gill injury, oxidative stress, and other physiological effects. Federici G; Shaw BJ; Handy RD Aquat Toxicol; 2007 Oct; 84(4):415-30. PubMed ID: 17727975 [TBL] [Abstract][Full Text] [Related]
4. Early stress responses in Atlantic salmon (Salmo salar) exposed to environmentally relevant concentrations of uranium. Song Y; Salbu B; Heier LS; Teien HC; Lind OC; Oughton D; Petersen K; Rosseland BO; Skipperud L; Tollefsen KE Aquat Toxicol; 2012 May; 112-113():62-71. PubMed ID: 22366426 [TBL] [Abstract][Full Text] [Related]
5. Effects of waterborne copper nanoparticles and copper sulphate on rainbow trout, (Oncorhynchus mykiss): physiology and accumulation. Shaw BJ; Al-Bairuty G; Handy RD Aquat Toxicol; 2012 Jul; 116-117():90-101. PubMed ID: 22480992 [TBL] [Abstract][Full Text] [Related]
6. Atlantic salmon (Salmo salar L.) smolts require more than two weeks to recover from acidic water and aluminium exposure. Nilsen TO; Ebbesson LO; Handeland SO; Kroglund F; Finstad B; Angotzi AR; Stefansson SO Aquat Toxicol; 2013 Oct; 142-143():33-44. PubMed ID: 23948076 [TBL] [Abstract][Full Text] [Related]
7. The changes to apical silver membrane uptake, and basolateral membrane silver export in the gills of rainbow trout (Oncorhynchus mykiss) on exposure to sublethal silver concentrations. Bury NR Aquat Toxicol; 2005 Mar; 72(1-2):135-45. PubMed ID: 15748752 [TBL] [Abstract][Full Text] [Related]
8. Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Schultz AG; Ong KJ; MacCormack T; Ma G; Veinot JG; Goss GG Environ Sci Technol; 2012 Sep; 46(18):10295-301. PubMed ID: 22891970 [TBL] [Abstract][Full Text] [Related]
9. Is Cl- protection against silver toxicity due to chemical speciation? Bielmyer GK; Brix KV; Grosell M Aquat Toxicol; 2008 Apr; 87(2):81-7. PubMed ID: 18304659 [TBL] [Abstract][Full Text] [Related]
10. Sublethal effects in Atlantic salmon (Salmo salar) exposed to mixtures of copper, aluminium and gamma radiation. Heier LS; Teien HC; Oughton D; Tollefsen KE; Olsvik PA; Rosseland BO; Lind OC; Farmen E; Skipperud L; Salbu B J Environ Radioact; 2013 Jul; 121():33-42. PubMed ID: 22583837 [TBL] [Abstract][Full Text] [Related]
11. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Asharani PV; Lianwu Y; Gong Z; Valiyaveettil S Nanotoxicology; 2011 Mar; 5(1):43-54. PubMed ID: 21417687 [TBL] [Abstract][Full Text] [Related]
12. Effects of acidic water and aluminum exposure on gill Na(+), K(+)-ATPase alpha-subunit isoforms, enzyme activity, physiology and return rates in Atlantic salmon (Salmo salar L.). Nilsen TO; Ebbesson LO; Kverneland OG; Kroglund F; Finstad B; Stefansson SO Aquat Toxicol; 2010 May; 97(3):250-9. PubMed ID: 20079944 [TBL] [Abstract][Full Text] [Related]
13. Gill histopathologies following exposure to nanosilver or silver nitrate. Hawkins AD; Thornton C; Kennedy AJ; Bu K; Cizdziel J; Jones BW; Steevens JA; Willett KL J Toxicol Environ Health A; 2015; 78(5):301-15. PubMed ID: 25734626 [TBL] [Abstract][Full Text] [Related]
14. Elemental profiles of freshwater mussels treated with silver nanoparticles: A metallomic approach. Gagné F; Turcotte P; Pilote M; Auclair J; André C; Gagnon C Comp Biochem Physiol C Toxicol Pharmacol; 2016 Oct; 188():17-23. PubMed ID: 27211012 [TBL] [Abstract][Full Text] [Related]
15. Influence of liberated silver from silver nanoparticles on nitrification inhibition of Nitrosomonas europaea. Radniecki TS; Stankus DP; Neigh A; Nason JA; Semprini L Chemosphere; 2011 Sep; 85(1):43-9. PubMed ID: 21757219 [TBL] [Abstract][Full Text] [Related]
16. Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Gagné F; André C; Skirrow R; Gélinas M; Auclair J; van Aggelen G; Turcotte P; Gagnon C Chemosphere; 2012 Oct; 89(5):615-22. PubMed ID: 22727896 [TBL] [Abstract][Full Text] [Related]
17. Route of exposure has a major impact on uptake of silver nanoparticles in Atlantic salmon (Salmo salar). Kleiven M; Rosseland BO; Teien HC; Joner EJ; Helen Oughton D Environ Toxicol Chem; 2018 Nov; 37(11):2895-2903. PubMed ID: 30125984 [TBL] [Abstract][Full Text] [Related]
18. Impacts of short-term acid and aluminum exposure on Atlantic salmon (Salmo salar) physiology: a direct comparison of parr and smolts. Monette MY; McCormick SD Aquat Toxicol; 2008 Jan; 86(2):216-26. PubMed ID: 18082903 [TBL] [Abstract][Full Text] [Related]
19. Sublethal effects of silver nanoparticles and dissolved silver in freshwater mussels. Gagné F; Auclair J; Turcotte P; Gagnon C J Toxicol Environ Health A; 2013; 76(8):479-90. PubMed ID: 23721583 [TBL] [Abstract][Full Text] [Related]
20. Bioaccumulation of silver nanoparticles in rainbow trout (Oncorhynchus mykiss): influence of concentration and salinity. Salari Joo H; Kalbassi MR; Yu IJ; Lee JH; Johari SA Aquat Toxicol; 2013 Sep; 140-141():398-406. PubMed ID: 23907091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]