BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 22265833)

  • 1. Anion deposition into ferritin.
    Hilton RJ; Zhang B; Martineau LN; Watt GD; Watt RK
    J Inorg Biochem; 2012 Mar; 108():8-14. PubMed ID: 22265833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin.
    Polanams J; Ray AD; Watt RK
    Inorg Chem; 2005 May; 44(9):3203-9. PubMed ID: 15847428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxido-reduction is not the only mechanism allowing ions to traverse the ferritin protein shell.
    Watt RK; Hilton RJ; Graff DM
    Biochim Biophys Acta; 2010 Aug; 1800(8):745-59. PubMed ID: 20214952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rate of iron transfer through the horse spleen ferritin shell determined by the rate of formation of Prussian Blue and Fe-desferrioxamine within the ferritin cavity.
    Zhang B; Watt RK; Gálvez N; Domínguez-Vera JM; Watt GD
    Biophys Chem; 2006 Mar; 120(2):96-105. PubMed ID: 16314026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster.
    Mal SS; Dickman MH; Kortz U; Todea AM; Merca A; Bögge H; Glaser T; Müller A; Nellutla S; Kaur N; van Tol J; Dalal NS; Keita B; Nadjo L
    Chemistry; 2008; 14(4):1186-95. PubMed ID: 18165953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron loading into ferritin can be stimulated or inhibited by the presence of cations and anions: a specific role for phosphate.
    Cutler C; Bravo A; Ray AD; Watt RK
    J Inorg Biochem; 2005 Dec; 99(12):2270-5. PubMed ID: 16203038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extended X-ray absorption fine structure studies of the anion complexes of FeZn uteroferrin.
    Wang X; Que L
    Biochemistry; 1998 May; 37(21):7813-21. PubMed ID: 9601042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving Fe2+ from ferritin ion channels to catalytic OH centers depends on conserved protein cage carboxylates.
    Behera RK; Theil EC
    Proc Natl Acad Sci U S A; 2014 Jun; 111(22):7925-30. PubMed ID: 24843174
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution and solid state NMR approaches to draw iron pathways in the ferritin nanocage.
    Lalli D; Turano P
    Acc Chem Res; 2013 Nov; 46(11):2676-85. PubMed ID: 24000809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Forming the phosphate layer in reconstituted horse spleen ferritin and the role of phosphate in promoting core surface redox reactions.
    Johnson JL; Cannon M; Watt RK; Frankel RB; Watt GD
    Biochemistry; 1999 May; 38(20):6706-13. PubMed ID: 10350490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ferroxidase center is essential for ferritin iron loading in the presence of phosphate and minimizes side reactions that form Fe(III)-phosphate colloids.
    Hilton RJ; David Andros N; Watt RK
    Biometals; 2012 Apr; 25(2):259-73. PubMed ID: 22012445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic and thermodynamic characterization of the cobalt and manganese oxyhydroxide cores formed in horse spleen ferritin.
    Zhang B; Harb JN; Davis RC; Kim JW; Chu SH; Choi S; Miller T; Watt GD
    Inorg Chem; 2005 May; 44(10):3738-45. PubMed ID: 15877458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.
    Latta DE; Bachman JE; Scherer MM
    Environ Sci Technol; 2012 Oct; 46(19):10614-23. PubMed ID: 22963051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new synthetic approach to the ferritin core uncovers the soluble iron(III) oxo-hydroxo aggregate [Fe11O6(OH)6(O2CPh)15].
    Gorun SM; Lippard SJ
    Nature; 1986 Feb 20-26; 319(6055):666-8. PubMed ID: 3951537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fe(III).ATP complexes. Models for ferritin and other polynuclear iron complexes with phosphate.
    Mansour AN; Thompson C; Theil EC; Chasteen ND; Sayers DE
    J Biol Chem; 1985 Jul; 260(13):7975-9. PubMed ID: 2989269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferroxidase activity of ferritin: effects of pH, buffer and Fe(II) and Fe(III) concentrations on Fe(II) autoxidation and ferroxidation.
    Yang X; Chasteen ND
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):615-8. PubMed ID: 10051430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite.
    Xu N; Christodoulatos C; Braida W
    Chemosphere; 2006 Aug; 64(8):1325-33. PubMed ID: 16466766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reaction paths of iron oxidation and hydrolysis in horse spleen and recombinant human ferritins.
    Yang X; Chen-Barrett Y; Arosio P; Chasteen ND
    Biochemistry; 1998 Jul; 37(27):9743-50. PubMed ID: 9657687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromate, molybdate, tungstate and vanadate behave as substrates of yeast diadenosine 5',5'''-p1,p4-tetraphosphate alpha, beta-phosphorylase.
    Guranowski A; Blanquet S
    Biochimie; 1986 May; 68(5):757-60. PubMed ID: 3015260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparison of an undecairon(III) complex with the ferritin iron core.
    Islam QT; Sayers DE; Gorun SM; Theil EC
    J Inorg Biochem; 1989 May; 36(1):51-62. PubMed ID: 2746221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.