These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 22266123)

  • 21. Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing.
    Ishihara D; Yamashita Y; Horie T; Yoshida S; Niho T
    J Exp Biol; 2009 Dec; 212(Pt 23):3882-91. PubMed ID: 19915131
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.
    Sridhar M; Kang CK
    Bioinspir Biomim; 2015 May; 10(3):036007. PubMed ID: 25946079
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aerodynamic forces and flow structures of the leading edge vortex on a flapping wing considering ground effect.
    Van Truong T; Byun D; Kim MJ; Yoon KJ; Park HC
    Bioinspir Biomim; 2013 Sep; 8(3):036007. PubMed ID: 23851351
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of leading edge vorticity and aerodynamic forces in flexible flapping wings.
    Zhao L; Deng X; Sane SP
    Bioinspir Biomim; 2011 Sep; 6(3):036007. PubMed ID: 21852729
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The aerodynamic benefit of wing-wing interaction depends on stroke trajectory in flapping insect wings.
    Lehmann FO; Pick S
    J Exp Biol; 2007 Apr; 210(Pt 8):1362-77. PubMed ID: 17401119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerical investigation of the aerodynamic characteristics of a hovering Coleopteran insect.
    Le TQ; Byun D; Saputra P; Ko JH; Park HC; Kim M
    J Theor Biol; 2010 Oct; 266(4):485-95. PubMed ID: 20650283
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system.
    Truong QT; Nguyen QV; Truong VT; Park HC; Byun DY; Goo NS
    Bioinspir Biomim; 2011 Sep; 6(3):036008. PubMed ID: 21865627
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative study of the hovering efficiency of flapping and revolving wings.
    Zheng L; Hedrick T; Mittal R
    Bioinspir Biomim; 2013 Sep; 8(3):036001. PubMed ID: 23680659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A bio-inspired study on tidal energy extraction with flexible flapping wings.
    Liu W; Xiao Q; Cheng F
    Bioinspir Biomim; 2013 Sep; 8(3):036011. PubMed ID: 23981650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical study on two-dimensional aerodynamic characteristics of unsteady wings.
    Azuma A; Okamoto M
    J Theor Biol; 2005 May; 234(1):67-78. PubMed ID: 15721036
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Time-varying wing-twist improves aerodynamic efficiency of forward flight in butterflies.
    Zheng L; Hedrick TL; Mittal R
    PLoS One; 2013; 8(1):e53060. PubMed ID: 23341923
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A two-dimensional aerodynamic model of freely flying insects.
    Iima M
    J Theor Biol; 2007 Aug; 247(4):657-71. PubMed ID: 17482214
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerodynamic damping during rapid flight maneuvers in the fruit fly Drosophila.
    Cheng B; Fry SN; Huang Q; Deng X
    J Exp Biol; 2010 Feb; 213(4):602-12. PubMed ID: 20118311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scaling law and enhancement of lift generation of an insect-size hovering flexible wing.
    Kang CK; Shyy W
    J R Soc Interface; 2013 Aug; 10(85):20130361. PubMed ID: 23760300
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of drag in insect hovering.
    Wang ZJ
    J Exp Biol; 2004 Nov; 207(Pt 23):4147-55. PubMed ID: 15498960
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A new torsion control mechanism induced by blood circulation in dragonfly wings.
    Hou D; Yin Y; Zhong Z; Zhao H
    Bioinspir Biomim; 2015 Feb; 10(1):016020. PubMed ID: 25656051
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion.
    Sun M; Wu JH
    J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The aerodynamic effects of wing-wing interaction in flapping insect wings.
    Lehmann FO; Sane SP; Dickinson M
    J Exp Biol; 2005 Aug; 208(Pt 16):3075-92. PubMed ID: 16081606
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Force generation and wing deformation characteristics of a flapping-wing micro air vehicle 'DelFly II' in hovering flight.
    Percin M; van Oudheusden BW; de Croon GC; Remes B
    Bioinspir Biomim; 2016 May; 11(3):036014. PubMed ID: 27194392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.