These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 22266411)

  • 1. Cooperative interactions between hippocampal and striatal systems support flexible navigation.
    Brown TI; Ross RS; Tobyne SM; Stern CE
    Neuroimage; 2012 Apr; 60(2):1316-30. PubMed ID: 22266411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Which way was I going? Contextual retrieval supports the disambiguation of well learned overlapping navigational routes.
    Brown TI; Ross RS; Keller JB; Hasselmo ME; Stern CE
    J Neurosci; 2010 May; 30(21):7414-22. PubMed ID: 20505108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of medial temporal lobe and striatal memory systems to learning and retrieving overlapping spatial memories.
    Brown TI; Stern CE
    Cereb Cortex; 2014 Jul; 24(7):1906-22. PubMed ID: 23448868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-resolution study of hippocampal and medial temporal lobe correlates of spatial context and prospective overlapping route memory.
    Brown TI; Hasselmo ME; Stern CE
    Hippocampus; 2014 Jul; 24(7):819-39. PubMed ID: 24659134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The hippocampus is functionally connected to the striatum and orbitofrontal cortex during context dependent decision making.
    Ross RS; Sherrill KR; Stern CE
    Brain Res; 2011 Nov; 1423():53-66. PubMed ID: 22000080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decreased functional magnetic resonance imaging activity in the hippocampus in favor of the caudate nucleus in older adults tested in a virtual navigation task.
    Konishi K; Etchamendy N; Roy S; Marighetto A; Rajah N; Bohbot VD
    Hippocampus; 2013 Nov; 23(11):1005-14. PubMed ID: 23929534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The well-worn route revisited: Striatal and hippocampal system contributions to familiar route navigation.
    Buckley M; McGregor A; Ihssen N; Austen J; Thurlbeck S; Smith SP; Heinecke A; Lew AR
    Hippocampus; 2024 Jul; 34(7):310-326. PubMed ID: 38721743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual water maze learning in human increases functional connectivity between posterior hippocampus and dorsal caudate.
    Woolley DG; Mantini D; Coxon JP; D'Hooge R; Swinnen SP; Wenderoth N
    Hum Brain Mapp; 2015 Apr; 36(4):1265-77. PubMed ID: 25418860
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociable contributions of the prefrontal cortex to hippocampus- and caudate nucleus-dependent virtual navigation strategies.
    Dahmani L; Bohbot VD
    Neurobiol Learn Mem; 2015 Jan; 117():42-50. PubMed ID: 25038426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Threat-induced modulation of hippocampal and striatal memory systems during navigation of a virtual environment.
    Goodman J; McClay M; Dunsmoor JE
    Neurobiol Learn Mem; 2020 Feb; 168():107160. PubMed ID: 31918021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal versus hippocampal representations during win-stay maze performance.
    Berke JD; Breck JT; Eichenbaum H
    J Neurophysiol; 2009 Mar; 101(3):1575-87. PubMed ID: 19144741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the hippocampus and orbitofrontal cortex during the disambiguation of social cues in working memory.
    Ross RS; LoPresti ML; Schon K; Stern CE
    Cogn Affect Behav Neurosci; 2013 Dec; 13(4):900-15. PubMed ID: 23640112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling the interaction of navigational systems in a reward-based virtual navigation task.
    Raiesdana S
    J Integr Neurosci; 2018; 17(1):27-42. PubMed ID: 29376881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior.
    Fouquet C; Babayan BM; Watilliaux A; Bontempi B; Tobin C; Rondi-Reig L
    PLoS One; 2013; 8(6):e67232. PubMed ID: 23826243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum.
    Jarbo K; Verstynen TD
    J Neurosci; 2015 Mar; 35(9):3865-78. PubMed ID: 25740516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interindividual differences in memory system local field potential activity predict behavioral strategy on a dual-solution T-maze.
    Goldenberg JE; Lentzou S; Ackert-Smith L; Knowlton H; Dash MB
    Hippocampus; 2020 Dec; 30(12):1313-1326. PubMed ID: 32894595
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The brain-derived neurotrophic factor Val66Met polymorphism is associated with reduced functional magnetic resonance imaging activity in the hippocampus and increased use of caudate nucleus-dependent strategies in a human virtual navigation task.
    Banner H; Bhat V; Etchamendy N; Joober R; Bohbot VD
    Eur J Neurosci; 2011 Mar; 33(5):968-77. PubMed ID: 21255124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Both the dorsal hippocampus and the dorsolateral striatum are needed for rat navigation in the Morris water maze.
    Miyoshi E; Wietzikoski EC; Bortolanza M; Boschen SL; Canteras NS; Izquierdo I; Da Cunha C
    Behav Brain Res; 2012 Jan; 226(1):171-8. PubMed ID: 21925543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gray matter differences correlate with spontaneous strategies in a human virtual navigation task.
    Bohbot VD; Lerch J; Thorndycraft B; Iaria G; Zijdenbos AP
    J Neurosci; 2007 Sep; 27(38):10078-83. PubMed ID: 17881514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning of distant state predictions by the orbitofrontal cortex in humans.
    Elliott Wimmer G; Büchel C
    Nat Commun; 2019 Jun; 10(1):2554. PubMed ID: 31186425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.