These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22266764)

  • 21. Simple and stereoselective preparation of an 4-(aminomethyl)-1,2,3-triazolyl nucleoside phosphoramidite.
    Kolganova NA; Florentiev VL; Chudinov AV; Zasedatelev AS; Timofeev EN
    Chem Biodivers; 2011 Apr; 8(4):568-76. PubMed ID: 21480503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ferrocene-assisted stabilization of collagen mimetic triple helices: solid-phase synthesis and structure.
    Dey SK; Kraatz HB
    Bioconjug Chem; 2006; 17(1):84-9. PubMed ID: 16417255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Stabilization of short collagen-like triple helices by protein engineering.
    Frank S; Kammerer RA; Mechling D; Schulthess T; Landwehr R; Bann J; Guo Y; Lustig A; Bächinger HP; Engel J
    J Mol Biol; 2001 May; 308(5):1081-9. PubMed ID: 11352592
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of collagen model peptides containing 4-fluoroproline; (4(S)-fluoroproline-pro-gly)10 forms a triple helix, but (4(R)-fluoroproline-pro-gly)10 does not.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nakazawa T; Ohkubo T; Kobayashi Y
    J Am Chem Soc; 2003 Aug; 125(33):9922-3. PubMed ID: 12914445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Collagen-like triple helix formation of synthetic (Pro-Pro-Gly)10 analogues: (4(S)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10, (4(R)-hydroxyprolyl-4(R)-hydroxyprolyl-Gly)10 and (4(S)-fluoroprolyl-4(R)-fluoroprolyl-Gly)10.
    Doi M; Nishi Y; Uchiyama S; Nishiuchi Y; Nishio H; Nakazawa T; Ohkubo T; Kobayashi Y
    J Pept Sci; 2005 Oct; 11(10):609-16. PubMed ID: 15880478
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural consequences of D-amino acids in collagen triple-helical peptides.
    Shah NK; Brodsky B; Kirkpatrick A; Ramshaw JA
    Biopolymers; 1999 Apr; 49(4):297-302. PubMed ID: 10079768
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of triple-helical conformations and melting analyses of synthetic collagen-like peptides by reversed-phase HPLC.
    Khew ST; Tong YW
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Oct; 858(1-2):79-90. PubMed ID: 17826365
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Triple-helix propensity of hydroxyproline and fluoroproline: comparison of host-guest and repeating tripeptide collagen models.
    Persikov AV; Ramshaw JA; Kirkpatrick A; Brodsky B
    J Am Chem Soc; 2003 Sep; 125(38):11500-1. PubMed ID: 13129344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cross-Linked Collagen Triple Helices by Oxime Ligation.
    Hentzen NB; Smeenk LEJ; Witek J; Riniker S; Wennemers H
    J Am Chem Soc; 2017 Sep; 139(36):12815-12820. PubMed ID: 28872857
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Triple-helical peptides: an approach to collagen conformation, stability, and self-association.
    Brodsky B; Thiagarajan G; Madhan B; Kar K
    Biopolymers; 2008 May; 89(5):345-53. PubMed ID: 18275087
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interstrand dipole-dipole interactions can stabilize the collagen triple helix.
    Shoulders MD; Raines RT
    J Biol Chem; 2011 Jul; 286(26):22905-12. PubMed ID: 21482820
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Switchable proline derivatives: tuning the conformational stability of the collagen triple helix by pH changes.
    Siebler C; Erdmann RS; Wennemers H
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10340-4. PubMed ID: 25088036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Collagen model peptides: Sequence dependence of triple-helix stability.
    Persikov AV; Ramshaw JA; Brodsky B
    Biopolymers; 2000; 55(6):436-50. PubMed ID: 11304671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structure and dynamics of peptide-amphiphiles incorporating triple-helical proteinlike molecular architecture.
    Yu YC; Roontga V; Daragan VA; Mayo KH; Tirrell M; Fields GB
    Biochemistry; 1999 Feb; 38(5):1659-68. PubMed ID: 9931034
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From azidoproline to functionalizable collagen.
    Siebler C; Erdmann RS; Wennemers H
    Chimia (Aarau); 2013; 67(12-13):891-5. PubMed ID: 24594333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Entropic control of the relative stability of triple-helical collagen peptide models.
    Suárez E; Díaz N; Suárez D
    J Phys Chem B; 2008 Nov; 112(47):15248-55. PubMed ID: 18973364
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gly-Gly-containing triplets of low stability adjacent to a type III collagen epitope.
    Shah NK; Sharma M; Kirkpatrick A; Ramshaw JA; Brodsky B
    Biochemistry; 1997 May; 36(19):5878-83. PubMed ID: 9153429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of N- and C-terminal functional groups on the stability of collagen triple helices.
    Egli J; Erdmann RS; Schmidt PJ; Wennemers H
    Chem Commun (Camb); 2017 Oct; 53(80):11036-11039. PubMed ID: 28937163
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of aldehydes with collagen: effect on thermal, enzymatic and conformational stability.
    Fathima NN; Madhan B; Rao JR; Nair BU; Ramasami T
    Int J Biol Macromol; 2004 Aug; 34(4):241-7. PubMed ID: 15374680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Peptide helices based on alpha-amino acids.
    Crisma M; Formaggio F; Moretto A; Toniolo C
    Biopolymers; 2006; 84(1):3-12. PubMed ID: 16123990
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.