These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 22266774)

  • 1. Pathway of oxygen incorporation from O2 in TiO2 photocatalytic hydroxylation of aromatics: oxygen isotope labeling studies.
    Li Y; Wen B; Yu C; Chen C; Ji H; Ma W; Zhao J
    Chemistry; 2012 Feb; 18(7):2030-9. PubMed ID: 22266774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photocatalytic degradation of aromatic pollutants: a pivotal role of conduction band electron in distribution of hydroxylated intermediates.
    Li Y; Wen B; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2012 May; 46(9):5093-9. PubMed ID: 22497472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalytic role of TiO(2) terminal oxygen atoms in liquid-phase photocatalytic reactions: oxidation of aromatic compounds in anhydrous acetonitrile.
    Montoya JF; Bahnemann DW; Peral J; Salvador P
    Chemphyschem; 2014 Aug; 15(11):2311-20. PubMed ID: 24827557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the reactivity of multicomponent photocatalysts: insight into the complex valence band of BiOBr.
    Fang YF; Ma WH; Huang YP; Cheng GW
    Chemistry; 2013 Feb; 19(9):3224-9. PubMed ID: 23325602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the photocatalytic mechanisms on TiO2 surfaces using the oxygen-18 isotopic label technique.
    Pang X; Chen C; Ji H; Che Y; Ma W; Zhao J
    Molecules; 2014 Oct; 19(10):16291-311. PubMed ID: 25310153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemistry of O- and H-containing species on the (001) surface of anatase TiO2: a DFT study.
    Hussain A; Gracia J; Nieuwenhuys BE; Niemantsverdriet JW
    Chemphyschem; 2010 Aug; 11(11):2375-82. PubMed ID: 20575137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A double arene hydroxylation mediated by dicopper(II)-hydroperoxide species.
    Battaini G; Monzani E; Perotti A; Para C; Casella L; Santagostini L; Gullotti M; Dillinger R; Näther C; Tuczek F
    J Am Chem Soc; 2003 Apr; 125(14):4185-98. PubMed ID: 12670241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of benzene hydroxylation by high-valent bare Fe(IV)=O2+: explicit electronic structure analysis.
    Li JL; Zhang X; Huang XR
    Phys Chem Chem Phys; 2012 Jan; 14(1):246-56. PubMed ID: 22068928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An efficient photocatalyst structure: TiO(2)(B) nanofibers with a shell of anatase nanocrystals.
    Yang D; Liu H; Zheng Z; Yuan Y; Zhao JC; Waclawik ER; Ke X; Zhu H
    J Am Chem Soc; 2009 Dec; 131(49):17885-93. PubMed ID: 19911792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. H2O-involved two-electron pathway for photooxidation of aldehydes on TiO2: an isotope labeling study.
    Shi T; Chang W; Zhang H; Ji H; Ma W; Chen C; Zhao J
    Environ Sci Technol; 2015 Mar; 49(5):3024-31. PubMed ID: 25648875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes.
    de Visser SP; Shaik S
    J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.
    Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M
    J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic hydroxylation at a non-heme iron center: observed intermediates and insights into the nature of the active species.
    Makhlynets OV; Rybak-Akimova EV
    Chemistry; 2010 Dec; 16(47):13995-4006. PubMed ID: 21117047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron-promoted ortho- and/or ipso-hydroxylation of benzoic acids with H(2)O(2).
    Makhlynets OV; Das P; Taktak S; Flook M; Mas-Ballesté R; Rybak-Akimova EV; Que L
    Chemistry; 2009 Dec; 15(47):13171-80. PubMed ID: 19876966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron catalyzed competitive olefin oxidation and ipso-hydroxylation of benzoic acids: further evidence for an Fe(V)═O oxidant.
    Das P; Que L
    Inorg Chem; 2010 Oct; 49(20):9479-85. PubMed ID: 20866083
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophilic arene hydroxylation and phenol O-H oxidations performed by an unsymmetric μ-η(1):η(1)-O2-peroxo dicopper(II) complex.
    Garcia-Bosch I; Ribas X; Costas M
    Chemistry; 2012 Feb; 18(7):2113-22. PubMed ID: 22250002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems.
    Yuan BL; Li XZ; Graham N
    Chemosphere; 2008 May; 72(2):197-204. PubMed ID: 18342912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined experimental and theoretical study on aromatic hydroxylation by mononuclear nonheme iron(IV)-oxo complexes.
    de Visser SP; Oh K; Han AR; Nam W
    Inorg Chem; 2007 May; 46(11):4632-41. PubMed ID: 17444641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.