These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Systematic analysis of microRNAs targeting the androgen receptor in prostate cancer cells. Östling P; Leivonen SK; Aakula A; Kohonen P; Mäkelä R; Hagman Z; Edsjö A; Kangaspeska S; Edgren H; Nicorici D; Bjartell A; Ceder Y; Perälä M; Kallioniemi O Cancer Res; 2011 Mar; 71(5):1956-67. PubMed ID: 21343391 [TBL] [Abstract][Full Text] [Related]
3. Integration of cap analysis of gene expression and chromatin immunoprecipitation analysis on array reveals genome-wide androgen receptor signaling in prostate cancer cells. Takayama K; Tsutsumi S; Katayama S; Okayama T; Horie-Inoue K; Ikeda K; Urano T; Kawazu C; Hasegawa A; Ikeo K; Gojyobori T; Ouchi Y; Hayashizaki Y; Aburatani H; Inoue S Oncogene; 2011 Feb; 30(5):619-30. PubMed ID: 20890304 [TBL] [Abstract][Full Text] [Related]
4. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity. Hu XD; Meng QH; Xu JY; Jiao Y; Ge CM; Jacob A; Wang P; Rosen EM; Fan S Biochem Biophys Res Commun; 2011 Jan; 404(4):903-9. PubMed ID: 21172304 [TBL] [Abstract][Full Text] [Related]
5. Overexpression of androgen receptor enhances the binding of the receptor to the chromatin in prostate cancer. Urbanucci A; Sahu B; Seppälä J; Larjo A; Latonen LM; Waltering KK; Tammela TL; Vessella RL; Lähdesmäki H; Jänne OA; Visakorpi T Oncogene; 2012 Apr; 31(17):2153-63. PubMed ID: 21909140 [TBL] [Abstract][Full Text] [Related]
6. MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Ma S; Chan YP; Kwan PS; Lee TK; Yan M; Tang KH; Ling MT; Vielkind JR; Guan XY; Chan KW Cancer Res; 2011 Jan; 71(2):583-92. PubMed ID: 21224345 [TBL] [Abstract][Full Text] [Related]
7. BTG2 loss and miR-21 upregulation contribute to prostate cell transformation by inducing luminal markers expression and epithelial-mesenchymal transition. Coppola V; Musumeci M; Patrizii M; Cannistraci A; Addario A; Maugeri-Saccà M; Biffoni M; Francescangeli F; Cordenonsi M; Piccolo S; Memeo L; Pagliuca A; Muto G; Zeuner A; De Maria R; Bonci D Oncogene; 2013 Apr; 32(14):1843-53. PubMed ID: 22614007 [TBL] [Abstract][Full Text] [Related]
9. miR-148a is an androgen-responsive microRNA that promotes LNCaP prostate cell growth by repressing its target CAND1 expression. Murata T; Takayama K; Katayama S; Urano T; Horie-Inoue K; Ikeda K; Takahashi S; Kawazu C; Hasegawa A; Ouchi Y; Homma Y; Hayashizaki Y; Inoue S Prostate Cancer Prostatic Dis; 2010 Dec; 13(4):356-61. PubMed ID: 20820187 [TBL] [Abstract][Full Text] [Related]
10. MiR-361-5p acts as a tumor suppressor in prostate cancer by targeting signal transducer and activator of transcription-6(STAT6). Liu D; Tao T; Xu B; Chen S; Liu C; Zhang L; Lu K; Huang Y; Jiang L; Zhang X; Huang X; Zhang L; Han C; Chen M Biochem Biophys Res Commun; 2014 Feb; 445(1):151-6. PubMed ID: 24491557 [TBL] [Abstract][Full Text] [Related]
11. [The relationship between microRNA-18 and BTG2 in the carcinogenesis of hepatocellular carcinoma]. Li Q; Wang G; Zhang ZM Zhonghua Gan Zang Bing Za Zhi; 2009 Jan; 17(1):42-5. PubMed ID: 19203451 [TBL] [Abstract][Full Text] [Related]
12. Regulation of the cell cycle gene, BTG2, by miR-21 in human laryngeal carcinoma. Liu M; Wu H; Liu T; Li Y; Wang F; Wan H; Li X; Tang H Cell Res; 2009 Jul; 19(7):828-37. PubMed ID: 19546886 [TBL] [Abstract][Full Text] [Related]
13. Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth. Takayama K; Tsutsumi S; Suzuki T; Horie-Inoue K; Ikeda K; Kaneshiro K; Fujimura T; Kumagai J; Urano T; Sakaki Y; Shirahige K; Sasano H; Takahashi S; Kitamura T; Ouchi Y; Aburatani H; Inoue S Cancer Res; 2009 Jan; 69(1):137-42. PubMed ID: 19117996 [TBL] [Abstract][Full Text] [Related]
14. Growth hormone (GH) receptors in prostate cancer: gene expression in human tissues and cell lines and characterization, GH signaling and androgen receptor regulation in LNCaP cells. Weiss-Messer E; Merom O; Adi A; Karry R; Bidosee M; Ber R; Kaploun A; Stein A; Barkey RJ Mol Cell Endocrinol; 2004 May; 220(1-2):109-23. PubMed ID: 15196705 [TBL] [Abstract][Full Text] [Related]
15. 14-3-3ζ, a novel androgen-responsive gene, is upregulated in prostate cancer and promotes prostate cancer cell proliferation and survival. Murata T; Takayama K; Urano T; Fujimura T; Ashikari D; Obinata D; Horie-Inoue K; Takahashi S; Ouchi Y; Homma Y; Inoue S Clin Cancer Res; 2012 Oct; 18(20):5617-27. PubMed ID: 22904106 [TBL] [Abstract][Full Text] [Related]
16. Androgen receptor-dependent regulation of Bcl-xL expression: Implication in prostate cancer progression. Sun A; Tang J; Hong Y; Song J; Terranova PF; Thrasher JB; Svojanovsky S; Wang HG; Li B Prostate; 2008 Mar; 68(4):453-61. PubMed ID: 18196538 [TBL] [Abstract][Full Text] [Related]
17. Triiodothyronine modulates cell proliferation of human prostatic carcinoma cells by downregulation of the B-cell translocation gene 2. Tsui KH; Hsieh WC; Lin MH; Chang PL; Juang HH Prostate; 2008 May; 68(6):610-9. PubMed ID: 18196550 [TBL] [Abstract][Full Text] [Related]
18. GREB1 is a novel androgen-regulated gene required for prostate cancer growth. Rae JM; Johnson MD; Cordero KE; Scheys JO; Larios JM; Gottardis MM; Pienta KJ; Lippman ME Prostate; 2006 Jun; 66(8):886-94. PubMed ID: 16496412 [TBL] [Abstract][Full Text] [Related]
19. Increased expression of androgen receptor sensitizes prostate cancer cells to low levels of androgens. Waltering KK; Helenius MA; Sahu B; Manni V; Linja MJ; Jänne OA; Visakorpi T Cancer Res; 2009 Oct; 69(20):8141-9. PubMed ID: 19808968 [TBL] [Abstract][Full Text] [Related]
20. Identification of mu-crystallin as an androgen-regulated gene in human prostate cancer. Malinowska K; Cavarretta IT; Susani M; Wrulich OA; Uberall F; Kenner L; Culig Z Prostate; 2009 Jul; 69(10):1109-18. PubMed ID: 19353593 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]