These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22267102)
41. N-tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Shao Z; Zhang H Chem Soc Rev; 2012 Jan; 41(2):560-72. PubMed ID: 21785803 [TBL] [Abstract][Full Text] [Related]
42. Catalytic coupling of sp2- and sp-hybridized carbon-hydrogen bonds with vinylmetalloid compounds. Marciniec B Acc Chem Res; 2007 Oct; 40(10):943-52. PubMed ID: 17937482 [TBL] [Abstract][Full Text] [Related]
43. DFT study of the mechanisms of in water Au(I)-catalyzed tandem [3,3]-rearrangement/Nazarov reaction/[1,2]-hydrogen shift of enynyl acetates: a proton-transport catalysis strategy in the water-catalyzed [1,2]-hydrogen shift. Shi FQ; Li X; Xia Y; Zhang L; Yu ZX J Am Chem Soc; 2007 Dec; 129(50):15503-12. PubMed ID: 18027935 [TBL] [Abstract][Full Text] [Related]
44. Density functional theory studies of negishi alkyl-alkyl cross-coupling reactions catalyzed by a methylterpyridyl-Ni(I) complex. Lin X; Phillips DL J Org Chem; 2008 May; 73(10):3680-8. PubMed ID: 18410144 [TBL] [Abstract][Full Text] [Related]
45. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions. Geiger WE; Barrière F Acc Chem Res; 2010 Jul; 43(7):1030-9. PubMed ID: 20345126 [TBL] [Abstract][Full Text] [Related]
46. More than bystanders: the effect of olefins on transition-metal-catalyzed cross-coupling reactions. Johnson JB; Rovis T Angew Chem Int Ed Engl; 2008; 47(5):840-71. PubMed ID: 18081111 [TBL] [Abstract][Full Text] [Related]
47. Well-defined Ir/Pd complexes with a triazolyl-diylidene bridge as catalysts for multiple tandem reactions. Zanardi A; Mata JA; Peris E J Am Chem Soc; 2009 Oct; 131(40):14531-7. PubMed ID: 19757793 [TBL] [Abstract][Full Text] [Related]
48. Mechanistic studies of magnetically recyclable Pd - Fe3O4 heterodimeric nanocrystal-catalyzed organic reactions. Byun S; Chung J; Kwon J; Moon Kim B Chem Asian J; 2015 Apr; 10(4):982-8. PubMed ID: 25620124 [TBL] [Abstract][Full Text] [Related]
49. Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. Nielson KD; van Duin AC; Oxgaard J; Deng WQ; Goddard WA J Phys Chem A; 2005 Jan; 109(3):493-9. PubMed ID: 16833370 [TBL] [Abstract][Full Text] [Related]
50. Pincer-type Heck catalysts and mechanisms based on Pd(IV) intermediates: a computational study. Blacque O; Frech CM Chemistry; 2010 Feb; 16(5):1521-31. PubMed ID: 20024984 [TBL] [Abstract][Full Text] [Related]
51. Bis sigma-bond dihydrogen and borane ruthenium complexes: bonding nature, catalytic applications, and reversible hydrogen release. Alcaraz G; Grellier M; Sabo-Etienne S Acc Chem Res; 2009 Oct; 42(10):1640-9. PubMed ID: 19586012 [TBL] [Abstract][Full Text] [Related]
52. Charge-tagged acetate ligands as mass spectrometry probes for metal complexes investigations: applications in Suzuki and Heck phosphine-free reactions. Oliveira FF; dos Santos MR; Lalli PM; Schmidt EM; Bakuzis P; Lapis AA; Monteiro AL; Eberlin MN; Neto BA J Org Chem; 2011 Dec; 76(24):10140-7. PubMed ID: 22029265 [TBL] [Abstract][Full Text] [Related]
54. Architecture of Pd-Au bimetallic nanoparticles in sodium bis(2-ethylhexyl)sulfosuccinate reverse micelles as investigated by X-ray absorption spectroscopy. Chen CH; Sarma LS; Chen JM; Shih SC; Wang GR; Liu DG; Tang MT; Lee JF; Hwang BJ ACS Nano; 2007 Sep; 1(2):114-25. PubMed ID: 19206527 [TBL] [Abstract][Full Text] [Related]
55. Colloidal noble-metal and bimetallic alloy nanocrystals: a general synthetic method and their catalytic hydrogenation properties. Song S; Liu R; Zhang Y; Feng J; Liu D; Xing Y; Zhao F; Zhang H Chemistry; 2010 Jun; 16(21):6251-6. PubMed ID: 20411536 [TBL] [Abstract][Full Text] [Related]
56. Au(I) /Au(III) catalysis: an alternative approach for C-C oxidative coupling. Hopkinson MN; Gee AD; Gouverneur V Chemistry; 2011 Jul; 17(30):8248-62. PubMed ID: 21678513 [TBL] [Abstract][Full Text] [Related]
57. Recent development of synthetic preparation methods for guanidines via transition metal catalysis. Zhang WX; Xu L; Xi Z Chem Commun (Camb); 2015 Jan; 51(2):254-65. PubMed ID: 25298218 [TBL] [Abstract][Full Text] [Related]
58. Transition metal-catalyzed three-component coupling of allenes and the related allylation reactions. Jeganmohan M; Cheng CH Chem Commun (Camb); 2008 Jul; (27):3101-17. PubMed ID: 18594713 [TBL] [Abstract][Full Text] [Related]
59. Two-step total syntheses of canthin-6-one alkaloids: new one-pot sequential Pd-catalyzed Suzuki-Miyaura coupling and Cu-catalyzed amidation reaction. Gollner A; Koutentis PA Org Lett; 2010 Mar; 12(6):1352-5. PubMed ID: 20192213 [TBL] [Abstract][Full Text] [Related]
60. Infrared Spectroscopy and Catalysis Research: Infrared spectra of adsorbed molecules provide important information in the study of catalysis. Eischens RP Science; 1964 Oct; 146(3643):486-93. PubMed ID: 17806797 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]