BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 22267739)

  • 1. Structural determinants of Clostridium difficile toxin A glucosyltransferase activity.
    Pruitt RN; Chumbler NM; Rutherford SA; Farrow MA; Friedman DB; Spiller B; Lacy DB
    J Biol Chem; 2012 Mar; 287(11):8013-20. PubMed ID: 22267739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue.
    Alvin JW; Lacy DB
    J Struct Biol; 2017 Jun; 198(3):203-209. PubMed ID: 28433497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of a neutralizing antibody helps identify structural features critical for binding of
    Kroh HK; Chandrasekaran R; Rosenthal K; Woods R; Jin X; Ohi MD; Nyborg AC; Rainey GJ; Warrener P; Spiller BW; Lacy DB
    J Biol Chem; 2017 Sep; 292(35):14401-14412. PubMed ID: 28705932
    [No Abstract]   [Full Text] [Related]  

  • 4. Development of a non-radiolabeled glucosyltransferase activity assay for C. difficile toxin A and B using ultra performance liquid chromatography.
    Loughney JW; Lancaster C; Price CE; Hoang VM; Ha S; Rustandi RR
    J Chromatogr A; 2017 May; 1498():169-175. PubMed ID: 28238427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate.
    Egerer M; Giesemann T; Herrmann C; Aktories K
    J Biol Chem; 2009 Feb; 284(6):3389-95. PubMed ID: 19047051
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Clostridium difficile TcdA and TcdB toxins with transition state analogues.
    Paparella AS; Aboulache BL; Harijan RK; Potts KS; Tyler PC; Schramm VL
    Nat Commun; 2021 Nov; 12(1):6285. PubMed ID: 34725358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release.
    D'Urzo N; Malito E; Biancucci M; Bottomley MJ; Maione D; Scarselli M; Martinelli M
    FEBS J; 2012 Sep; 279(17):3085-97. PubMed ID: 22747490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a structural understanding of Clostridium difficile toxins A and B.
    Pruitt RN; Lacy DB
    Front Cell Infect Microbiol; 2012; 2():28. PubMed ID: 22919620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural organization of the functional domains of Clostridium difficile toxins A and B.
    Pruitt RN; Chambers MG; Ng KK; Ohi MD; Lacy DB
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13467-72. PubMed ID: 20624955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the glucosyltransferase domain of TcdA in complex with RhoA provides insights into substrate recognition.
    Chen B; Liu Z; Perry K; Jin R
    Sci Rep; 2022 May; 12(1):9028. PubMed ID: 35637242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High temporal resolution of glucosyltransferase dependent and independent effects of Clostridium difficile toxins across multiple cell types.
    D'Auria KM; Bloom MJ; Reyes Y; Gray MC; van Opstal EJ; Papin JA; Hewlett EL
    BMC Microbiol; 2015 Feb; 15(1):7. PubMed ID: 25648517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A.
    Kreimeyer I; Euler F; Marckscheffel A; Tatge H; Pich A; Olling A; Schwarz J; Just I; Gerhard R
    Naunyn Schmiedebergs Arch Pharmacol; 2011 Mar; 383(3):253-62. PubMed ID: 21046073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A neutralizing antibody that blocks delivery of the enzymatic cargo of
    Kroh HK; Chandrasekaran R; Zhang Z; Rosenthal K; Woods R; Jin X; Nyborg AC; Rainey GJ; Warrener P; Melnyk RA; Spiller BW; Lacy DB
    J Biol Chem; 2018 Jan; 293(3):941-952. PubMed ID: 29180448
    [No Abstract]   [Full Text] [Related]  

  • 14.
    Paparella AS; Cahill SM; Aboulache BL; Schramm VL
    ACS Chem Biol; 2022 Sep; 17(9):2507-2518. PubMed ID: 36038138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Harnessing the glucosyltransferase activities of Clostridium difficile for functional studies of toxins A and B.
    Darkoh C; Kaplan HB; Dupont HL
    J Clin Microbiol; 2011 Aug; 49(8):2933-41. PubMed ID: 21653766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TcdB of
    Stieglitz F; Gerhard R; Hönig R; Giehl K; Pich A
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Rho GTPases in Toxicity of Clostridium difficile Toxins.
    Chen S; Sun C; Wang H; Wang J
    Toxins (Basel); 2015 Dec; 7(12):5254-67. PubMed ID: 26633511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional defects in
    Gupta P; Zhang Z; Sugiman-Marangos SN; Tam J; Raman S; Julien JP; Kroh HK; Lacy DB; Murgolo N; Bekkari K; Therien AG; Hernandez LD; Melnyk RA
    J Biol Chem; 2017 Oct; 292(42):17290-17301. PubMed ID: 28842504
    [No Abstract]   [Full Text] [Related]  

  • 20. Cytotoxicity of Clostridium difficile toxin B does not require cysteine protease-mediated autocleavage and release of the glucosyltransferase domain into the host cell cytosol.
    Li S; Shi L; Yang Z; Feng H
    Pathog Dis; 2013 Feb; 67(1):11-8. PubMed ID: 23620115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.