BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 22267742)

  • 1. Controlling lipid fluxes at glycerol-3-phosphate acyltransferase step in yeast: unique contribution of Gat1p to oleic acid-induced lipid particle formation.
    Marr N; Foglia J; Terebiznik M; Athenstaedt K; Zaremberg V
    J Biol Chem; 2012 Mar; 287(13):10251-10264. PubMed ID: 22267742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycerol-3-phosphate acyltransferases gat1p and gat2p are microsomal phosphoproteins with differential contributions to polarized cell growth.
    Bratschi MW; Burrowes DP; Kulaga A; Cheung JF; Alvarez AL; Kearley J; Zaremberg V
    Eukaryot Cell; 2009 Aug; 8(8):1184-96. PubMed ID: 19525420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology of the microsomal glycerol-3-phosphate acyltransferase Gpt2p/Gat1p of Saccharomyces cerevisiae.
    Pagac M; Vazquez HM; Bochud A; Roubaty C; Knöpfli C; Vionnet C; Conzelmann A
    Mol Microbiol; 2012 Dec; 86(5):1156-66. PubMed ID: 23016825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of phosphatidic acid in lipid particles and endoplasmic reticulum of Saccharomyces cerevisiae.
    Athenstaedt K; Daum G
    J Bacteriol; 1997 Dec; 179(24):7611-6. PubMed ID: 9401016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redundant systems of phosphatidic acid biosynthesis via acylation of glycerol-3-phosphate or dihydroxyacetone phosphate in the yeast Saccharomyces cerevisiae.
    Athenstaedt K; Weys S; Paltauf F; Daum G
    J Bacteriol; 1999 Mar; 181(5):1458-63. PubMed ID: 10049376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The initial step of the glycerolipid pathway: identification of glycerol 3-phosphate/dihydroxyacetone phosphate dual substrate acyltransferases in Saccharomyces cerevisiae.
    Zheng Z; Zou J
    J Biol Chem; 2001 Nov; 276(45):41710-6. PubMed ID: 11544256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The yeast acyltransferase Sct1p regulates fatty acid desaturation by competing with the desaturase Ole1p.
    De Smet CH; Vittone E; Scherer M; Houweling M; Liebisch G; Brouwers JF; de Kroon AI
    Mol Biol Cell; 2012 Apr; 23(7):1146-56. PubMed ID: 22323296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of the lipid droplet localized glycerol‑3‑phosphate acyltransferase Gpt2 prevents a futile triacylglycerol cycle in yeast.
    Kiegerl B; Tavassoli M; Smart H; Shabits BN; Zaremberg V; Athenstaedt K
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Dec; 1864(12):158509. PubMed ID: 31421179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triacylglycerol biosynthesis in yeast.
    Sorger D; Daum G
    Appl Microbiol Biotechnol; 2003 May; 61(4):289-99. PubMed ID: 12743757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Sn-glycerol-3-phosphate acyltransferases (GPATs) in plants].
    Liu C; Xiao DW; Shi CL; Hu XF; Wu KB; Guan CY; Xiong XH
    Yi Chuan; 2013 Dec; 35(12):1352-9. PubMed ID: 24645344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triacylglycerol synthesis in lipid particles from baker's yeast (Saccharomyces cerevisiae).
    Christiansen K
    Biochim Biophys Acta; 1978 Jul; 530(1):78-90. PubMed ID: 356890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular identification of microsomal acyl-CoA:glycerol-3-phosphate acyltransferase, a key enzyme in de novo triacylglycerol synthesis.
    Cao J; Li JL; Li D; Tobin JF; Gimeno RE
    Proc Natl Acad Sci U S A; 2006 Dec; 103(52):19695-700. PubMed ID: 17170135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body.
    Alves-Bezerra M; Ramos IB; De Paula IF; Maya-Monteiro CM; Klett EL; Coleman RA; Gondim KC
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Mar; 1862(3):324-336. PubMed ID: 27956137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. sn-Glycerol-3-phosphate acyltransferases in plants.
    Chen X; Snyder CL; Truksa M; Shah S; Weselake RJ
    Plant Signal Behav; 2011 Nov; 6(11):1695-9. PubMed ID: 22057337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AGPAT6 is a novel microsomal glycerol-3-phosphate acyltransferase.
    Chen YQ; Kuo MS; Li S; Bui HH; Peake DA; Sanders PE; Thibodeaux SJ; Chu S; Qian YW; Zhao Y; Bredt DS; Moller DE; Konrad RJ; Beigneux AP; Young SG; Cao G
    J Biol Chem; 2008 Apr; 283(15):10048-57. PubMed ID: 18238778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycerol-3-phosphate acyltransferases and metabolic syndrome: recent advances and future perspectives.
    Huang Y; Hu K; Lin S; Lin X
    Expert Rev Mol Med; 2022 Sep; 24():e30. PubMed ID: 36059117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial glycerol-3-phosphate acyltransferase-1 directs the metabolic fate of exogenous fatty acids in hepatocytes.
    Lewin TM; Wang S; Nagle CA; Van Horn CG; Coleman RA
    Am J Physiol Endocrinol Metab; 2005 May; 288(5):E835-44. PubMed ID: 15598672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target.
    Muoio DM; Seefeld K; Witters LA; Coleman RA
    Biochem J; 1999 Mar; 338 ( Pt 3)(Pt 3):783-91. PubMed ID: 10051453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylcholine deficiency upregulates enzymes of triacylglycerol metabolism in CHO cells.
    Caviglia JM; De Gómez Dumm IN; Coleman RA; Igal RA
    J Lipid Res; 2004 Aug; 45(8):1500-9. PubMed ID: 15175356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oleate inhibits steryl ester synthesis and causes liposensitivity in yeast.
    Connerth M; Czabany T; Wagner A; Zellnig G; Leitner E; Steyrer E; Daum G
    J Biol Chem; 2010 Aug; 285(35):26832-26841. PubMed ID: 20571028
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.