These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 22267775)
21. Genomic reduction and evolution of novel genetic membranes and protein-targeting machinery in eukaryote-eukaryote chimaeras (meta-algae). Cavalier-Smith T Philos Trans R Soc Lond B Biol Sci; 2003 Jan; 358(1429):109-33; discussion 133-4. PubMed ID: 12594921 [TBL] [Abstract][Full Text] [Related]
22. Polyploidy of endosymbiotically derived genomes in complex algae. Hirakawa Y; Ishida K Genome Biol Evol; 2014 Apr; 6(4):974-80. PubMed ID: 24709562 [TBL] [Abstract][Full Text] [Related]
24. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Felsner G; Sommer MS; Gruenheit N; Hempel F; Moog D; Zauner S; Martin W; Maier UG Genome Biol Evol; 2011; 3():140-50. PubMed ID: 21081314 [TBL] [Abstract][Full Text] [Related]
26. On the origin of chloroplasts, import mechanisms of chloroplast-targeted proteins, and loss of photosynthetic ability - review. Vesteg M; Vacula R; Krajcovic J Folia Microbiol (Praha); 2009; 54(4):303-21. PubMed ID: 19826918 [TBL] [Abstract][Full Text] [Related]
27. Nucleomorph ribosomal DNA and telomere dynamics in chlorarachniophyte algae. Silver TD; Moore CE; Archibald JM J Eukaryot Microbiol; 2010; 57(6):453-9. PubMed ID: 21040099 [TBL] [Abstract][Full Text] [Related]
28. Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. Le Corguillé G; Pearson G; Valente M; Viegas C; Gschloessl B; Corre E; Bailly X; Peters AF; Jubin C; Vacherie B; Cock JM; Leblanc C BMC Evol Biol; 2009 Oct; 9():253. PubMed ID: 19835607 [TBL] [Abstract][Full Text] [Related]
29. Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Khan H; Parks N; Kozera C; Curtis BA; Parsons BJ; Bowman S; Archibald JM Mol Biol Evol; 2007 Aug; 24(8):1832-42. PubMed ID: 17522086 [TBL] [Abstract][Full Text] [Related]
30. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Stork S; Lau J; Moog D; Maier UG Protoplasma; 2013 Oct; 250(5):1013-23. PubMed ID: 23612938 [TBL] [Abstract][Full Text] [Related]
31. The chloroplast protein import system: from algae to trees. Shi LX; Theg SM Biochim Biophys Acta; 2013 Feb; 1833(2):314-31. PubMed ID: 23063942 [TBL] [Abstract][Full Text] [Related]
32. Plastid proteome assembly without Toc159: photosynthetic protein import and accumulation of N-acetylated plastid precursor proteins. Bischof S; Baerenfaller K; Wildhaber T; Troesch R; Vidi PA; Roschitzki B; Hirsch-Hoffmann M; Hennig L; Kessler F; Gruissem W; Baginsky S Plant Cell; 2011 Nov; 23(11):3911-28. PubMed ID: 22128122 [TBL] [Abstract][Full Text] [Related]
33. A novel type of light-harvesting antenna protein of red algal origin in algae with secondary plastids. Sturm S; Engelken J; Gruber A; Vugrinec S; Kroth PG; Adamska I; Lavaud J BMC Evol Biol; 2013 Jul; 13():159. PubMed ID: 23899289 [TBL] [Abstract][Full Text] [Related]
34. Evolutionary origin of a preprotein translocase in the periplastid membrane of complex plastids: a hypothesis. Bodył A Plant Biol (Stuttg); 2004 Sep; 6(5):513-8. PubMed ID: 15375721 [TBL] [Abstract][Full Text] [Related]
36. New insights into the mechanism of chloroplast protein import and its integration with protein quality control, organelle biogenesis and development. Paila YD; Richardson LGL; Schnell DJ J Mol Biol; 2015 Mar; 427(5):1038-1060. PubMed ID: 25174336 [TBL] [Abstract][Full Text] [Related]
37. Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics. Tanifuji G; Archibald JM; Hashimoto T Sci Rep; 2016 Feb; 6():21016. PubMed ID: 26888293 [TBL] [Abstract][Full Text] [Related]
38. Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Sarai C; Tanifuji G; Nakayama T; Kamikawa R; Takahashi K; Yazaki E; Matsuo E; Miyashita H; Ishida KI; Iwataki M; Inagaki Y Proc Natl Acad Sci U S A; 2020 Mar; 117(10):5364-5375. PubMed ID: 32094181 [TBL] [Abstract][Full Text] [Related]
39. Plastids and protein targeting. McFadden GI J Eukaryot Microbiol; 1999; 46(4):339-46. PubMed ID: 10461382 [TBL] [Abstract][Full Text] [Related]
40. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. Nozaki H; Matsuzaki M; Takahara M; Misumi O; Kuroiwa H; Hasegawa M; Shin-i T; Kohara Y; Ogasawara N; Kuroiwa T J Mol Evol; 2003 Apr; 56(4):485-97. PubMed ID: 12664168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]