These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Role of 5'AMP-activated protein kinase in skeletal muscle. Treebak JT; Wojtaszewski JF Int J Obes (Lond); 2008 Sep; 32 Suppl 4():S13-7. PubMed ID: 18719592 [TBL] [Abstract][Full Text] [Related]
4. α2 isoform-specific activation of 5'adenosine monophosphate-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-β-D-ribonucleoside at a physiological level activates glucose transport and increases glucose transporter 4 in mouse skeletal muscle. Nakano M; Hamada T; Hayashi T; Yonemitsu S; Miyamoto L; Toyoda T; Tanaka S; Masuzaki H; Ebihara K; Ogawa Y; Hosoda K; Inoue G; Yoshimasa Y; Otaka A; Fushiki T; Nakao K Metabolism; 2006 Mar; 55(3):300-8. PubMed ID: 16483872 [TBL] [Abstract][Full Text] [Related]
5. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Miura S; Kai Y; Kamei Y; Bruce CR; Kubota N; Febbraio MA; Kadowaki T; Ezaki O Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E47-55. PubMed ID: 18940938 [TBL] [Abstract][Full Text] [Related]
6. The exercise dose response: key lessons from the past. Bamman MM Am J Physiol Endocrinol Metab; 2008 Feb; 294(2):E230-1. PubMed ID: 18160457 [No Abstract] [Full Text] [Related]
7. Lack of AMPKalpha2 enhances pyruvate dehydrogenase activity during exercise. Klein DK; Pilegaard H; Treebak JT; Jensen TE; Viollet B; Schjerling P; Wojtaszewski JF Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1242-9. PubMed ID: 17711995 [TBL] [Abstract][Full Text] [Related]
8. Signalling mechanisms in skeletal muscle: role in substrate selection and muscle adaptation. Hawley JA; Hargreaves M; Zierath JR Essays Biochem; 2006; 42():1-12. PubMed ID: 17144876 [TBL] [Abstract][Full Text] [Related]
9. Genetic impairment of AMPKalpha2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice. Maarbjerg SJ; Jørgensen SB; Rose AJ; Jeppesen J; Jensen TE; Treebak JT; Birk JB; Schjerling P; Wojtaszewski JF; Richter EA Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E924-34. PubMed ID: 19654283 [TBL] [Abstract][Full Text] [Related]
10. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Park SJ; Gavrilova O; Brown AL; Soto JE; Bremner S; Kim J; Xu X; Yang S; Um JH; Koch LG; Britton SL; Lieber RL; Philp A; Baar K; Kohama SG; Abel ED; Kim MK; Chung JH Cell Metab; 2017 May; 25(5):1135-1146.e7. PubMed ID: 28467930 [TBL] [Abstract][Full Text] [Related]
11. AMP-activated protein kinase in contraction regulation of skeletal muscle metabolism: necessary and/or sufficient? Jensen TE; Wojtaszewski JF; Richter EA Acta Physiol (Oxf); 2009 May; 196(1):155-74. PubMed ID: 19243572 [TBL] [Abstract][Full Text] [Related]
12. The exercise pill--too good to be true? Goodyear LJ N Engl J Med; 2008 Oct; 359(17):1842-4. PubMed ID: 18946072 [No Abstract] [Full Text] [Related]
13. Genetic model for the chronic activation of skeletal muscle AMP-activated protein kinase leads to glycogen accumulation. Barré L; Richardson C; Hirshman MF; Brozinick J; Fiering S; Kemp BE; Goodyear LJ; Witters LA Am J Physiol Endocrinol Metab; 2007 Mar; 292(3):E802-11. PubMed ID: 17106064 [TBL] [Abstract][Full Text] [Related]
14. Cumulative responses of muscle protein synthesis are augmented with chronic resistance exercise training. Gasier HG; Riechman SE; Wiggs MP; Buentello A; Previs SF; Fluckey JD Acta Physiol (Oxf); 2011 Mar; 201(3):381-9. PubMed ID: 20804462 [TBL] [Abstract][Full Text] [Related]
15. Energy expenditure of heavy to severe exercise and recovery. Scott CB J Theor Biol; 2000 Nov; 207(2):293-7. PubMed ID: 11034835 [TBL] [Abstract][Full Text] [Related]
16. Oral administration of amino acidic supplements improves protein and energy profiles in skeletal muscle of aged rats: elongation of functional performance and acceleration of mitochondrial recovery in adenosine triphosphate after exhaustive exertion. Chen Scarabelli C; McCauley RB; Yuan Z; Di Rezze J; Patel D; Putt J; Raddino R; Allebban Z; Abboud J; Scarabelli GM; Chilukuri K; Gardin J; Saravolatz L; Faggian G; Mazzucco A; Scarabelli TM Am J Cardiol; 2008 Jun; 101(11A):42E-48E. PubMed ID: 18514626 [TBL] [Abstract][Full Text] [Related]
17. Bed rest reduces metabolic protein content and abolishes exercise-induced mRNA responses in human skeletal muscle. Ringholm S; Biensø RS; Kiilerich K; Guadalupe-Grau A; Aachmann-Andersen NJ; Saltin B; Plomgaard P; Lundby C; Wojtaszewski JF; Calbet JA; Pilegaard H Am J Physiol Endocrinol Metab; 2011 Oct; 301(4):E649-58. PubMed ID: 21750272 [TBL] [Abstract][Full Text] [Related]
18. Dissociation of 5' AMP-activated protein kinase activation and glucose uptake stimulation by mitochondrial uncoupling and hyperosmolar stress: differential sensitivities to intracellular Ca2+ and protein kinase C inhibition. Patel N; Khayat ZA; Ruderman NB; Klip A Biochem Biophys Res Commun; 2001 Jul; 285(4):1066-70. PubMed ID: 11467861 [TBL] [Abstract][Full Text] [Related]
19. Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Saleem A; Carter HN; Iqbal S; Hood DA Exerc Sport Sci Rev; 2011 Oct; 39(4):199-205. PubMed ID: 21799424 [TBL] [Abstract][Full Text] [Related]
20. Acute exercise does not cause sustained elevations in AMPK signaling or expression. Lee-Young RS; Koufogiannis G; Canny BJ; McConell GK Med Sci Sports Exerc; 2008 Aug; 40(8):1490-4. PubMed ID: 18614941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]