These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 2226779)
1. Flight and heat dissipation in birds. A possible molecular mechanism. Giardina B; Corda M; Pellegrini MG; Sanna MT; Brix O; Clementi ME; Condo SG FEBS Lett; 1990 Sep; 270(1-2):173-6. PubMed ID: 2226779 [TBL] [Abstract][Full Text] [Related]
2. On the importance of radiative heat exchange during nocturnal flight in birds. Léger J; Larochelle J J Exp Biol; 2006 Jan; 209(Pt 1):103-14. PubMed ID: 16354782 [TBL] [Abstract][Full Text] [Related]
3. How birds dissipate heat before, during and after flight. Lewden A; Bishop CM; Askew GN J R Soc Interface; 2023 Dec; 20(209):20230442. PubMed ID: 38086401 [TBL] [Abstract][Full Text] [Related]
4. Flight effects on plasma levels of neurohypophysial hormones in homing pigeons. George JC; John TM; Koike TI Biol Signals; 1992; 1(3):160-6. PubMed ID: 1307921 [TBL] [Abstract][Full Text] [Related]
5. Heat loss from feet of herring gulls at rest and during flight. Baudinette RV; Loveridge JP; Wilson KJ; Mills CD; Schmidt-Nielsen K Am J Physiol; 1976 Apr; 230(4):920-4. PubMed ID: 1267025 [TBL] [Abstract][Full Text] [Related]
6. Structural and functional analysis of the two haemoglobins of the antarctic seabird Catharacta maccormicki characterization of an additional phosphate binding site by molecular modelling. Tamburrini M; Riccio A; Romano M; Giardina B; di Prisco G Eur J Biochem; 2000 Oct; 267(19):6089-98. PubMed ID: 10998071 [TBL] [Abstract][Full Text] [Related]
7. Erythrocytic phosphates and flying activity in birds. Riera M; Palomeque J; Planas J Comp Biochem Physiol A Comp Physiol; 1983; 74(4):849-54. PubMed ID: 6132731 [TBL] [Abstract][Full Text] [Related]
8. The reduction of heat production in exercising pigeons after L-carnitine supplementation. Janssens GP; Buyse J; Seynaeve M; Decuypere E; De Wilde R Poult Sci; 1998 Apr; 77(4):578-84. PubMed ID: 9565242 [TBL] [Abstract][Full Text] [Related]
10. Cardiorespiratory adjustments of homing pigeons to steady wind tunnel flight. Peters GW; Steiner DA; Rigoni JA; Mascilli AD; Schnepp RW; Thomas SP J Exp Biol; 2005 Aug; 208(Pt 16):3109-20. PubMed ID: 16081609 [TBL] [Abstract][Full Text] [Related]
11. Control and regulatory mechanisms associated with thermogenesis in flying insects and birds. Loli D; Bicudo JE Biosci Rep; 2005; 25(3-4):149-80. PubMed ID: 16283551 [TBL] [Abstract][Full Text] [Related]
12. Regulation of protein breakdown and adrenocortical response to stress in birds during migratory flight. Jenni L; Jenni-Eiermann S; Spina F; Schwabl H Am J Physiol Regul Integr Comp Physiol; 2000 May; 278(5):R1182-9. PubMed ID: 10801285 [TBL] [Abstract][Full Text] [Related]
13. Optic flow-field variables trigger landing in hawk but not in pigeons. Davies MN; Green PR Naturwissenschaften; 1990 Mar; 77(3):142-4. PubMed ID: 2342582 [No Abstract] [Full Text] [Related]
14. Temperature regulation and heat dissipation during flight in birds. Torre-Bueno JR J Exp Biol; 1976 Oct; 65(2):471-82. PubMed ID: 1003090 [TBL] [Abstract][Full Text] [Related]
15. Cardiovascular and organ weight adaptations as related to flight activity in birds. Viscor G; Marqués MS; Palomeque J Comp Biochem Physiol A Comp Physiol; 1985; 82(3):597-9. PubMed ID: 2866881 [TBL] [Abstract][Full Text] [Related]
16. Interspecific variation in avian thermoregulatory patterns and heat dissipation behaviours in a subtropical desert. Thompson ML; Cunningham SJ; McKechnie AE Physiol Behav; 2018 May; 188():311-323. PubMed ID: 29471075 [TBL] [Abstract][Full Text] [Related]
17. Thermoregulation during flight: body temperature and sensible heat transfer in free-ranging Brazilian free-tailed bats (Tadarida brasiliensis). Reichard JD; Fellows SR; Frank AJ; Kunz TH Physiol Biochem Zool; 2010; 83(6):885-97. PubMed ID: 21034204 [TBL] [Abstract][Full Text] [Related]
18. The impact of humidity on evaporative cooling in small desert birds exposed to high air temperatures. Gerson AR; Smith EK; Smit B; McKechnie AE; Wolf BO Physiol Biochem Zool; 2014; 87(6):782-95. PubMed ID: 25461643 [TBL] [Abstract][Full Text] [Related]
19. The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Giardina B; Mosca D; De Rosa MC Acta Physiol Scand; 2004 Nov; 182(3):229-44. PubMed ID: 15491403 [TBL] [Abstract][Full Text] [Related]
20. Comparative power curves in bird flight. Tobalske BW; Hedrick TL; Dial KP; Biewener AA Nature; 2003 Jan; 421(6921):363-6. PubMed ID: 12540899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]